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Institute for Theoretical Physics III, University of Stuttgart SS 2025

Problem 8.1: The Bogoliubov-de Gennes Hamiltonian and particle-hole “symmetry” [Oral | 4

pt(s) ]

ID: ex_bogoliubov_de_gennes_hamiltonian_particle_hole_symmetry:tqp25

Learning objective

For the topological classification of the Majorana chain, we used the “intrinsic” particle-hole symmetry

of the Bogoliubov-de Gennes (BdG) Hamiltonian. In the lecture, it was claimed that this is not a real

symmetry (in the sense that some operator commutes with the Hamiltonian) but rather a tautological

constraint on the BdG Hamiltonian that arises from the algebra of fermion operators. Here you study

this claim in detail.

We are interested in the most generic quadratic fermion Hamiltonian

Ĥ =
L∑

i,j=1

[
Hij c

†
icj +

1

2

(
∆ij c

†
ic

†
j +∆∗

ij cjci

)]
(1)

withmean-field pairing terms parametrized by∆ij ∈ C andHermitian hoppingHamiltonianHij ∈ C.
In the following, we write H ≡ (Hij)ij and ∆ ≡ (∆ij)ij for the corresponding L× L-matrices.

a) Show that for a Hermitian Hamiltonian Ĥ , it follows that H† = H and w.l.o.g. ∆T = −∆. 1pt(s)

b) Now introduce the 2L-component Nambu spinor 1pt(s)

Ψ ≡
(
c1, . . . , cL, c

†
1, . . . , c

†
L

)T

(2)

and show that the Hamiltonian can be written in the form

Ĥ =
1

2
Ψ†HBdGΨ+ const. (3)

with the Bogoliubov-de Gennes Hamiltonian

HBdG =

(
H ∆

−∆∗ −H∗

)
. (4)

c) Show that HBdG features a particle-hole “symmetry” as defined in the lecture and required for 1pt(s)

the tenfold way classification.

Note: Convince yourself that this reality constraint on HBdG does not impose any constraints on Ĥ , but

follows simply from the algebraic properties of the fermion operators; it is, in this sense, “intrinsic” or

“tautological.”

d) At no point did we use that superconductivity is really present (∆ 6= 0). This suggests that the 1pt(s)

above construction also works for particle-number conserving models. So did we miss some

topological phases when discussing such models by ignoring this “symmetry?” Why not?

Hint: Have a look at Eq. (4).
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Problem 8.2: From the Majorana chain to the transverse-field Ising model [Written | 7 pt(s) ]

ID: ex_majorana_chain_transverse_field_ising_model:tqp25

Learning objective

As discussed at the beginning of this course, the transverse-field Ising model is a one-dimensional spin-12
model of interacting spins with a quantum phase transition that exemplifies the notion of spontaneous

symmetry breaking. By contrast, the Majorana chain is a quadratic fermion model that can be solved

exactly and features a topological phase transition without symmetry breaking. Remarkably, there

is a mathematically exact mapping between fermionic and spin-12 systems known as Jordan-Wigner

transformation that relates these two models. The point of this task is then (1) to solve the transverse-field

Ising model exactly by mapping it to the Majorana chain, and (2) to understand how the topological

phase transition of the Majorana chain translates to the spontaneous symmetry breaking phase transition

of the transverse-field Ising model.

In the lecture, we introduced the mean-field Hamiltonian of a one-dimensional p-wave supercon-
ductor (with open boundary conditions)

ĤMC = −µ

2

L∑
i=1

(iγ2i−1γ2i) + w
L−1∑
i=1

(iγ2iγ2i+1) (OBC) , (5)

commonly referred to as Majorana chain. Here, w = ∆ denotes the hopping amplitude/supercon-

ducting gap parameter and µ the chemical potential; the γn are 2LMajorana operators which satisfy

{γn, γm} = 2δnm and γ†
n = γn. Since the Hamiltonian is quadratic in fermion operators, we had no

trouble computing the spectrum in the Bogoliubov-de Gennes representation.

The goal is to show that this Hamiltonian can be mapped exactly onto the transverse-field Ising model

(TIM), given by the spin-1
2
Hamiltonian

HTIM = −J
L−1∑
i=1

σx
i σ

x
i+1 + h

L∑
i=1

σz
i (OBC) (6)

which we introduced in the first lecture of this course as an example of spontaneous symmetry

breaking. Here, J > 0 denotes the ferromagnetic coupling strength and h ∈ R the transverse

magnetic field.

a) Consider the Hilbert spaceHSpin = (C2)⊗L of a spin-1
2
system with L spins and Pauli matrices 1pt(s)

σα
i for α = x, y, z and i = 1, . . . , L.

Show that the operators

γ2i−1 :=

[∏
j<i

σz
j

]
σx
i and γ2i :=

[∏
j<i

σz
j

]
σy
i (7)

satisfy the algebraic relations of Majorana fermions, i.e., γ†
n = γn and {γn, γm} = 2δnm.

Hence, these operators define a Fock space representationHFock ' HSpin via ci =
1
2
(γ2i−1+ iγ2i).

This transformation is known as Jordan-Wigner transformation.

Note:The transformation Eq. (7) is highly non-local! The non-local product of σz-operators is sometimes

referred to as Jordan-Wigner string which can be troublesome for the simulation of fermionic systems on

quantum computers (because qubits = spin-12 ).
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b) Apply the Jordan-Wigner transformation (7) to the Majorana chain (5) and show that it results 3pt(s)

in the transverse-field Ising model (6). How do the parameters of the two models relate?

Conclude from this where the gap of the transverse-field Ising model closes and the symmetry-

breaking phase transition occurs.

Do you see why we consider open boundary conditions? What would happen for periodic

boundary conditions?

Note: Your results in a) and b) demonstrate that a Jordan-Wigner transformation can be applied to any

fermionic system in order to translate it into an equivalent spin system – irrespective of dimensionality

and spatial connectivity! However, only in one spatial dimension (and with open boundary conditions)

the non-local Jordan-Wigner strings have a chance to cancel, such that a local fermion model maps to a

local spin model (and vice versa).

c) Demonstrate how the ground state(s) of the Majorana chain at the fixed points (trivial: w = 0 3pt(s)

and µ > 0; topological: w > 0 and µ = 0) map to the ground state(s) of the transverse-field
Ising model.

What happens to the long-range correlations lim|i−j|→∞〈σx
i σ

x
j 〉 of the transverse-field Ising

model (in the symmetry-broken phase) under Jordan-Wigner transformation?

What is the fermionic counterpart of the global spin-flip symmetry

Z =
∏
i

σz
i with [Z,HTIM] = 0 (8)

of the transverse-field Ising model?

Fun fact: Here you showed how the transverse-field Ising model in one dimension can be exactly

solved by first mapping it to a non-interacting fermion model (theMajorana chain), and then solving

the latter with the usual tricks (a unitary Bogoliubov transformation in Fock space).

It is remarkable (and quite surprising) that the quantum transverse-field Ising model in one spatial

dimension, in turn, can be mapped to the classical Ising model in two spatial dimensions at finite

temperature (and without magnetic field)1! This mapping therefore translates the quantum phase

transition of the Majorana chain, via the quantum phase transition of the transverse-field Ising

model, to the thermal phase transition of the two-dimensional classical Ising model. The latter is

described by the famous Onsager solution2 (who didn’t use this mapping trick).

By the way, the mapping between D-dimensional quantum systems (at zero temperature) and

D + 1-dimensional classical systems (at finite temperature) is generic3 and not a special feature of
the TIM.

1T. D. Schultz, D. C. Mattis, and E. H. Lieb, Two-Dimensional Ising Model as a Soluble Problem of Many Fermions,

Reviews of Modern Physics, Vol. 36, No. 3 (1964)
2L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Physical Review,

Vol. 65, No. 3–4 (1944)
3M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and inner deriva-

tions with applications to many-body problems, Communications in Mathematical Physics, Vol. 51, No. 2 (1976)
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Problem 8.3: Effects of interactions on the topological classification of free fermion systems

(Numerics) [Oral | 5 pt(s) ]

ID: ex_effects_of_interactions_on_topological_classification:tqp25

Learning objective

In the lecture, we discussed that interactions can change the topological classification of free fermion

systems. In this exercise, you study an example of this explicitly using numerics: You consider stacks

of interacting Majorana chains with time-reversal symmetry (symmetry class BDI) and show that for

eight chains the topological phase can be connected to the trivial phase without closing the gap while

preserving time-reversal symmetry. This demonstrates the breakdown of the Z topological index of BDI

to a Z8 index in the presence of interactions. This particular example was introduced and studied by

Fidkowski and Kitaev in 2010 a.

a L. Fidkowski and A. Kitaev, Effects of interactions on the topological classification of free fermion systems,

PRB 81, 134509 (2010)

In the lecture, Majorana fermions were introduced as self-adjoint operators

γ2i−1 = ci + c†i and γ2i = i(c†i − ci) (9)

for fermionic annihilation and creation operators ci and c
†
i .

Furthermore, in Problem 8.2 you showed that Majorana fermions can be represented as spin-1
2

operators

γ2i−1 =

[∏
j<i

σz
j

]
σx
i and γ2i =

[∏
j<i

σz
j

]
σy
i (10)

via a Jordan-Wigner transformation.

In the lecture, you learned that the non-interacting Majorana chain can be thought of as a model in

symmetry class BDI in one dimension with a topological Z-index. BDI is protected by time-reversal
symmetry (TRS T with T 2 = +1) and particle-hole symmetry (PHS C with C2 = +1). While

the latter is intrinsic to superconductors and cannot be broken [recall Problem 8.1], time-reversal

symmetry is a true symmetry of the many-body Hamiltonian and restricts allowed perturbations.

a) To construct interactions that respect time-reversal symmetry, specify the representation of 1pt(s)

time-reversal T = UK for the Majorana chain and show that

T γ2i−1T −1 = +γ2i−1 and T γ2iT −1 = −γ2i . (11)

How is this realized in the Jordan-Wigner representation (10)?

How does Eq. (11) restrict allowed interactions of the form γnγmγl . . .?

We now consider 8 stackedMajorana chains with the non-interacting HamiltonianHtot =
∑8

α=1H
α
MC,

where each chain is described by the usual Majorana chain Hamiltonian

Hα
MC = −µ

2

L∑
i=1

iγα
2i−1γ

α
2i + w

L−1∑
i=1

iγα
2iγ

α
2i+1 (12)
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where γα
n denotes the nth Majorana mode on chain α = 1, . . . , 8. Note that all 8 chains are

parametrized by the same couplings µ and w. We define TRS to act like Eq. (11) for all α.

This stack of 8 non-interacting Majorana chains is in a topological phase for 2|w| > |µ|, and in the
trivial phase for 2|w| < |µ|. The topological phase realizes the topological index ν = 8 from the

Z-classification of symmetry class BDI. For only quadratic couplings between the chains (i.e. γα
nγ

β
m),

phases with different topological index ν cannot be connected to each other without closing the gap
(do you see why?).

Our goal is now to connect the topological ν = 8 phase with the trivial phase (by using quartic
interactions between the chains) without closing the gap and without violating time-reversal sym-

metry (11). This can only be possible if one invalidates one of the assumptions for the classification

of topological phases of free fermions. The claim is that once interactions (non-quadratic terms of

Majorana operators) are allowed, such an adiabatic connection of the two phases becomes possible!

To this end, Fidkowski and Kitaev suggested the following quartic interaction

Wtot = λ
L∑
i=1

(W2i−1 +W2i) , (13)

where each term Wn only couples the eight Majorana modes γα
n with the same site index n but

different chain indices α as follows:

W = γ1γ2γ3γ4 + γ5γ6γ7γ8 + γ1γ2γ5γ6 + γ3γ4γ7γ8 − γ2γ3γ6γ7 − γ1γ4γ5γ8 + γ1γ3γ5γ7

+ γ3γ4γ5γ6 + γ1γ2γ7γ8 − γ2γ3γ5γ8 − γ1γ4γ6γ7 + γ2γ4γ6γ8 − γ1γ3γ6γ8 − γ2γ4γ5γ7 .

(14)

Here we omit the site subscripts for simplicity (theW s are translation invariant).

Note: Fidkowski and Kitaev used rather involved arguments from representation theory to construct this

particular interaction. Here we simply take it as given and study its properties.

b) Show that this interaction term is time-reversal symmetric. 1pt(s)

c) Consider a point in the topological phase with µ = 0 and w, λ > 0. 1pt(s)

Why is it sufficient to only consider a block of 16 Majorana fermions γα
0 and γα

1 for α = 1, . . . , 8?

Map the 16 Majorana fermions to 8 spin-1
2
(which are labeled by α = 1, . . . , 8) by using the

Jordan-Wigner transformation (10).

Why is the spin-1
2
representation more convenient for numerical calculations than the fermionic

representation (9)?

d) Finally, using the spin-1
2
representation from subtask c), implement the Hamiltonian 2pt(s)

H = w

8∑
α=1

iγα
0 γ

α
1 + λ [W0 +W1] (15)

as a 256×256matrix using a computer algebra system or programming language of your choice.

Then show numerically that for the parametrization w = t and λ = 1 − t the Hamiltonian
remains gapped along the path t ∈ [0, 1].

Use this result to argue that one can adiabatically connect the topological phase (µ = λ = 0,
w > 0) and the trivial phase (µ > 0, w = λ = 0) of Eq. (12) via a continuous path using the
interaction termW without closing the bulk gap.
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What does this imply for the Z-index of BDI if interactions are allowed?
Hint: Construct the γ operators in terms of spin-12 operators as tensor products of the individual Pauli

matrices (and identity matrices). Then use these individual (256 × 256) matrices to construct the full

Hamiltonian (15).
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