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J Lecture 8 [09.05.25]

1.7. Notes on classification

The IQHE is an important corner stone in the theory of topological phases, both historically and concep-
tually. Starting from the IQHE, there are (at least) two directions to explore:

usSe at qur'pr\'\d'

\ (.s wu){wu‘ uecd wodely
@™y

add wejac 4\'0\4]‘

TO'P'(‘})""‘ | (elavors
& ﬂl}:n muo’w\/a/_,

\L&X«wp les {or
LGKAM-—P’ES Yor

Topetogten| o1 o3
-(\-lu at J'\'MI\ .Cc.uM-'GU t §'PT ‘F‘("Iff 0‘(.
uou-su ﬁrarﬁ‘ua '/f\/ldn'og_' !’

(1) Keep the QHE setting but consider fractionally filled Landau levels:
—> Interactions become important (flat bands!)
— * Fractional quantum Hall Effect (FQHE)

— States with « (non-invertible) topological order
with anyonic excitations and fractional charges (depending on the filling)

(2) Leave the QHE setting but stay in the realm of non-interacting fermions (on the lattice):
— Construct lattice models with topological bands ...
« ...w/o magnetic fields (?)
+ ...w/o breaking time reversal symmetry (?)
« ...w/o particle-number conservation (?)
— - Topological insulators & superconductors
[SPT phases of non-interacting fermions & invertible topological orders]
In the following we will pursue Path 2 which will eventually lead us to the “periodic table of topological
insulators and superconductors” in Chapter 6.
Note:

IQH states (= filled Landau levels) are part of the classification of topological phases of non-interacting
fermions that we will introduce [92]. However, they are also long-range entangled [35], but this long-
range entanglement is of a special “boring” kind in that it does not give rise to fancy anyonic statistics of
excitations. In our nomenclature, IQH states are examples of « invertible topological order. (You can locally
disentangle a IQH state by “gluing” a time-inverted copy on top.)

According to another naming scheme [different from the one I introduced], IQH states are “short-range
entangled” because they lack anyonic excitations and their - fopological entanglement entropy vanishes
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[36,37]. Because of the time-reversal symmetry breaking and the chiral nature of their edge modes, some
call IQH states simply chzral phases [93,94].

It is noteworthy that symmetry does play a role for the IQH, namely the U(1) symmetry that describes the
conservation of charge. It does neither protect the entanglement structure nor the chiral edge states, but it is
necessary for the quantization of the Hall response [35,93,94]. (Which makes sense: in a material where
charge can randomly enter or leave the sample, there is no reason for a conductivity to be quantized.)
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2. Topological Bands without Magnetic Fields:
The Quantum Anomalous Hall Effect

2.1. Preliminaries

We seek for models with the following properties:
« Lattice model (of non-interacting fermions)
« Band insulator
» Non-zero Chern number
« No magnetic field (!)

The first three conditions are satisfied by the * Hofstadter model, a lattice model that captures the IQHE
physics. However, the Hofstadter model is a rather complicated multiband model due to the enlarged
magnetic unit cell (© Problemset 4). This motivates the question:

Are there models without external magnetic field that have Chern bands?

e Chern band = Band with non-zero Chern number

» Note that the sum of Chern numbers of all bands is always zero (© Problemset 3). Thus, if the
answer to this question is affirmative, the model must have at least two bands. This can be achieved
either with an internal degree of freedom (spin) or, alternatively, with sublattice degrees of freedom
(i.e., a unit cell with more than one site).

Before we proceed, let us fix the nomenclature:

#% Definition: Chern insulator

Lattice model
Chern insulator* (CI*) := Band insulator (21
Non-zero Chern number

Prototype: * HofStadter model

Lattice model
Band insulator

Chern insulator (CI) := (2.2)
Non-zero Chern number
No external magnetic field
Prototype: » Haldane model
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With this definition, the above question can be restated:
Are there Chern insulators?
Before we focus on specific models, let us explore some generic properties of translation invariant models
with two bands:
2.1.1. Lattice models with two bands
1 General setting: (The following is crucial throughout Part I!)
We start with a brief review of Hamiltonians that describe non-interacting fermions in translation
invariant lattice models (here with any number of bands in any dimension):
i | <t Single-particle (SP) Hilbert space # = span {|W;«)};, With SP Hamiltonian
H =" Hia,s|¥ia)(¥jp] (23)
io,jB
i =1...N: site index
o« = 1...M: internal degrees of freedom (e.g. multiple sites per unit cell, spin, ...)
i — Many-body (MB) Hilbert space # = @, /\" (¥#) with MB Hamiltonian
J is the fermionic v Fock space (the + exterior algebra of J); /\"" denotes the nth * exterior
power of the single-particle Hilbert space .
H=73" clyHiapcis (2.4)
io,jp
ciT o/ Cia: fermionic creation/annihilation operators for fermion in state | ;)
The fact that this Hamiltonian only includes quadratic terms of fermionic operators makes it
exactly solvable; one says that H describes quadratic fermions, non-interacting fermions, or
[ree fermions.
ii = Assume Translation symmetry 5
H = Z CltaHaﬂ (k)ckﬂ (2.5)
LEN:
with & momentum modes
1 -
Cha = \/_N Xl: ke, (2.6)
x;: position of site i
iv | Sothe SP Hamiltonian decomposes as H = @y H (k) with % Bloch Hamiltonian H (k)
(a Hermitian M x M -matrix).
Diagonalizing the latter yields
H(k) = ZEn(k)|unk)(unk| 27)
n
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* |ugn): Bloch wavefunction
e n=1...M: band index
» E,(k): SP spectrum
— The SP Hilbert space decomposes as H = €Dy, H with momentum mode space
Hie = span {[unk) -
2 | We now specialize to models with #wo bands on a 2D lattice ...
< Most general two-band Hamiltonian on a 2D lattice:
H=@ Hk) with HK) =ek)1+dk)-G 2.8)
keT?
o T?2: Brillouin zone (BZ) (= Torus)
o 0% with @ = x, y, z: Pauli matrices
e d(k) : T? — R3: real, vector-valued function on BZ

The two spatial dimensions are responsible for the Brillouin zone being a 2-torus 72, the two bands
allow us to expand the Hermitian 2 x 2-matrix H (k) into Pauli matrices.

3 | Spectrum:

Ex(k) = e(k) £ |d (k)] (2.9)
— Band insulator iff
min £ (k) > max E_(k) (2.10)
keT? keT?

Strictly speaking, this condition allows the system to be a band insulator 7f the chemical potential
(= Fermi energy Er) is in the gap (which the above condition guarantees to exist). We assume this
situation in the following: ming 72 E4+ (k) > EF > maxg 72 E_(k).

<t Weaker condition:
VkeT?: Ei (k)—E_(k)=2|dk)| >0 (2.11)

This means that the two bands never touch and/or intersect.

— Normalization possible:

d (k)

= — suchthat d : T? — §2 (2.12)
|d (k)|

d (k)

S2: unit sphere in R3

4 | Chern number of the lower band:

~

(Oriented) Jacobian for surface integral
o Berry curvature

ce_ L / d(k)-[0,d (k) x dyd (k)] d%*k €Z (2.13)
47‘[ T2

AnZ

S

Derivation: © Problemset 5
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5 Geometric interpretation:

The expression for the Berry curvature is just the ¥ Jacobian for the (oriented) surface integral
over the sphere S2:

iv

A6 [5.29.x 5, 2]

—
»
LS

>

®s

— C counts how often d (k) covers S2 when sweeping over the Brillouin zone 72

Note that this can only happen in integer steps since the area element in Eq. (2.13) is oréented:
“going back” counts negative.

A

C = C|d] € Z is a topological invariant

This implies in particular that two different maps d,, and dj, that can be continuously deformed
into each other must have the same winding number C.

Mathematically this follows because Eq. (2.13) is a continuous function of d and maps into
the integers. It is a well-known fact from topology that such functions are constant on their
domain.

Hamiltonian H, can be continuously deformed into H} without closing the gap

& d, can be continuously deformed into dp

Note that when the gap closes, the normalized vector d hasa singularity (= is undefined)
somewhere on T2 so that Eq. (2.13) is undefined as well.

— C labels different topological phases

6 | I Skyrmion interpretation:

The region on T2 where the field d (k) “wraps around the sphere” can be quite localized.
This creates a local “knot” in the field that can be viewed as an excitation of a specific type
of non-linear field theory known as  non-linear sigma models. In this (very different) context,
these localized excitations are called 1 skyrmions (after TONY SKYRME who introduced
them to describe the strong force [95]); they are an example for 1 topological solitons. Here
an illustration of a skyrmion that represents a field d wrapping once around the sphere:
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ii | If the direction how the field sweeps over the sphere is inverted, one ends up with an anti-
skyrmion. A single skyrmion is a topologically protected field configuration and cannot be
removed by continuous deformations of d (this is just our argument from above about the
topological character of C restated in terms of skyrmions). However, a skyrmion and an
antiskyrmion can be continuously removed (they “annihilate” each other):
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(This is a 1D cut through the 2D surface on which the skyrmion-antiskyrmion pair lives.)
ii | Summary:
« Skyrmions are “twists” of d and “live” on the BZ

« Positive (negative) Berry curvature indicates a finite (anti-)skyrmion density

« The Chern number is the number of skyrmions minus the number of antiskyrmions

PAGE

72

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART



Institute for
iiagret'cal

FREE FERMIONS » THE QUANTUM ANOMALOUS HALL EFFECT hyslcs

iv | An interesting mathematical tangent:
T Note: Pontryagin number

The fact that d lives on a torus 7 (the Brillouin zone) is not important in this situation.
Thus it is possible to replace the torus 72 by a sphere S? (which can be seen as the
one-point compactified momentum space R? of the continuum). Then

d:S?—>Ss? (2.14)

is a continuous function that maps the sphere onto the sphere. Two Hamiltonians H,

and H}, belong to the same phase, if the corresponding functions d, and dj, can be
“smoothly deformed” into each other.

In topology, such a smooth deformation of one function into another is known as
a ™ homotopy; the set of equivalence classes under homotopy has a group structure
and is known as (second) homotopy group of S2, write 75 (S?); it is well-known that
712(S?) = Z. The equivalence classes in 77 (S?) can be labeled by an integer known
as * Pontryagin number; it counts how often a map d traces out the (target) sphere S2
when sweeping the (domain) sphere S2. In the current situation, this is exactly the
Chern number C.

That the torus can be replaced by a sphere is also evident in the skyrmion picture. Since
the skyrmions can be localized, they do not care whether they live on a torus or a sphere:

S'P(«u( %‘i

Toroe T

® Mo
However, note that d can have “twists” around the torus that are not reflected in
the Chern number (and are not related to skyrmions). These “twists” give rise to
™ weak topological indices which can have physical effects on the boundary physics in
specific directions [57, 96, 97]. Since these effects rely on the domain of dtobea
torus (= Brillouin zone), they are protected by the translation symmetry of the lattice
(this makes them “weak”). Weak topological indices are not important for the models
discussed below.
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2.1.2. Time-reversal symmetry (TRS)

i! We will introduce time-reversal symmetry as the first of three “generic” symmetries and discuss the
restrictions it imposes on the Bloch Hamiltonian H (k). It plays a role for the » Haldane model but not as
protecting symmetry; quite the contrary: it must be broken to make the model interesting (recall that the
IQHE - which we would like to mimic - is not an SPT phase). However, in upcoming lectures (throughout
Part I) we will use this symmetry as a protecting symmetry instead, which then leads us to the concept of

> topological insulators and their classification.

1

< Single particle with SP Hilbert space #:

TRST : t+— —tisaZp-symmetry (inverting time twice should do nothing!)
and sould reasonably act as

TxT~! = x but TpT™! < —p (2.15)
— TihT™! = T[x, p]T™! = —[x, p] = —ih
— T must be antiunitary:
Ty = UX with K = Complex conjugation (2.16)

U': unitary operator that determines the representation Ty of T on the SP Hilbert space

™ Wigner’s theorem [98] states that a symmetry (i.e. an operator O that preserves all probability
amplitudes, |(OW|O®)|? = |(¥|D)|?) acts either as a unitary or an antiunitary operator on the
Hilbert space (© Problemset 1). In combination with 7i T~ = —i, this fixes T to the generic
form Ty above.

— SP Hamiltonian H is & time-reversal symmetric iff [H, Ty] = 0
fora U chosen appropriately to describe the system (= below)

Explicitly the condition for time reversal symmetry reads:

HUX =HTy =TyH =UXH & HU =UH* & H=UH*U" (2.17)

Ty is antiunitary —
T2 =U0U*=uWwh)™! (2.18)

Ty is projective representation of Z, —

T =21 with |A| =1 (2.19)

 Being a > projective representation of Z, realizes our notion that inverting time twice should
bring us back to the same physical state: Because physical states are rays (@ Problemset 1),
this only means that 77 applied to a state vector gives back the same vector up 70 a phase. This
phase must be the same for all states since otherwise you could superimpose two states with
different phases to construct a state that transforms to a physically distinct state under 75 -
in contradiction with our assumption that inverting time twice has no physical consequences.

o Here is an alternative, more generic line of arguments that does not require the assumption
that time reversal is a Z, symmetry as input [92]:

Assume that you made the total Hamiltonian block-diagonal by “using up” all its potential
unitary symmetries. Then each block carries an irreducible representation of the unitary
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symmetry group and an “irreducible Hamiltonian” so that the arguments below hold. How
T is represented in each block can vary, however the result for 72 must be the same on
all blocks because otherwise 7 is not a (projective) representation of Z, on the whole SP
Hilbert space—and this would contradict our intuition that applying time-reversal twice
does nothing.

Now go back to Eq. (2.18) and note that ...
- UU™ is unitary
- [H,UU*] =0— UU* is a symmetry of H
< Generic H without any additional unitary symmetries
— Hamiltonian irreducible
S T2 =UU*=21
(This is an application of  Schur’s lemma on the irreducible Hamiltonian.)

o7
Egs. (2.18)and (2.19) = U=MT  UT =UA (2.20a)

= U=AU (2.20b)
= A==l (2.20¢)
—
TS = +1 (2.21)
If T3 = —1, Ty is an antiunitary, projective representation of Z.
3 | Examples:

» < Spinless particles: (=no internal degrees of freedom)

e 2 _
Tp= 1 K = T;y=+1 (2.22)
Uo

« < Spin-1 particles with spin operator § = %5

Just as time reversal inverts the linear momentum p, it should also invert (internal) angular
momentum (= spin):

] -

TyST;' = -S (2.23)

. ] . . . .
So we want that Ty o T[jl = —o' for all Pauli matricesi = x, y, z.

Note that this choice is not arbitrary. For example, it is inconsistent to demand (nonzero)
spin to be invariant under time-reversal (Ty S; Ty, ! = §;) because then [S;, S;] = i¢; ik Sk
(which defines spin operators) implies [S;, S;] = —i€;jx Sk (since Ty is still antiunitary)
such that Sy =0 4.

— Solution:
— y 2 _
T, = oY K = T{=-1 (2.24)
2 W—/ i
U
2
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- Note how Ty o' T;;' = —o' is satisfied: for i = y it follows from the complex conjuga-
tion K (antiunitarity), but fori = x, z it follows because o* and o< are rea/ matrices
that anticommute with 7.

- The statement 73 = —1 is true for all particles with Aalf-integer spin (but with other
choices for U that depend on the spin, of course).

- Often you will find the choice Ty = —io” K. This follows if one derives Tyasa spin
rotation. Note that you can multiply T% with an arbitrary phase without changing its
algebraic properties.

4| Consequence of T2 = —1:

i! Important: Kramers theorem

Every eigenenergy of a time-reversal invariant Hamiltonian H with 75 = —1 is at least
two-fold degenerate.

Proof: ® Problemset 5

The theorem was discovered by HANS KRAMERS in 1930 and mathematically studied on general
grounds by EUGENE WIGNER in 1932 [99]. It has far-reaching consequences: For instance, the
degeneracy of atomic energy levels with half-integer total angular momentum cannot be lifted
completely by electric fields alone (which preserve TRS); instead, magnetic fields are needed (which
break TRS). > Later we will see that Kramers theorem restricts the band structure of time-reversal
invariant systems in that it requires crossing bands at so called > time-reversal invariant momenta
(TRIMs) in the Brillouin zone.
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