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↓ Lecture 6 [02.05.25]

5 | ^ Special case: Coupling to uniform electric field E.t/ D Ee�i!t

i | Choose gauge such that E.t/ D �@tA.t/ (i.e. At D � D const)

Remember that in general E D �r� � @t A and B D r �A.

! A.t/ D Ee�i!t=.i!/

ii | ^ Perturbation Hamiltonian:

�HI .t/ D �J .t/ �A.t/ (1.63)

with (total) current operator J .t/

• At this point we do not want to fix the unperturbed Hamiltonian H0 that describes
the charge carriers without the field. Hence we do not know the form of J .t/ in the
interaction picture. We therefore play it safe and carry a potential time-dependence
along.

• This is a linearized version of the true coupling Hamiltonian that describes the effect of
the electromagnetic field on electrical charges. For instance, a free particle with charge
q (and with � D const D 0) is described by the Hamiltonian

H D
1

2m
.p � qA/2 D

p2

2m„ƒ‚…
�H0

�

�J‚…„ƒ
qp

m
�A„ ƒ‚ …

��H.t/

C����O.A2/ : (1.64)

There is also a quadratic term A2 which does not contribute to the Hall conductance
(so we can safely drop it).

• In therms of the ↓ current density j .r; t / the Hamiltonian reads

�HI .t/ D �

Z
d2r j .r; t / �A.r; t / (1.65)

with the usual current density j D q
2m

P
i Œpiı.r � ri /C ı.r � ri /pi � for many par-

ticles indexed by i . With a homogeneous electric field, this becomes

�HI .t/ D �J .t/ �A.t/ with total current J .t/ D

Z
d2r j .r; t / : (1.66)

For a homogeneous current, the total current is J D LxLy j D Aj whereA D LxLy

denotes the area of the sample.

iii | ^ Current as observable: O D Ji !

(Remember that we set the static expectation value to zero: h0jJi j0i D 0.)

hJi .t/i
1.62
D �

1

„!

Z t

�1

h0j
�
Jj .t

0/; Ji .t/
�
j0iEj e

�i!t 0

dt 0 (1.67a)

Time-translation invariance ofH0; Substitution t 00 D t � t 0

$
�
�
1

„!

Z 1

0

h0j
�
Jj .0/; Ji .t

00/
�
j0i ei!t 00

dt 00
�

„ ƒ‚ …
DW �ij .!/ A

Ej e
�i!t (1.67b)
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with ⁂ conductivity tensor �ij .!/

The sample area A D LxLy shows up because the conductivity tensor relates, by definition,
the current density ji to the electric field, and not the total current Ji D Aji .

To show the second equality, use that Jj .t
0/ D e

i
„

H0t 0

Jj e
� i

„
H0t 0

[and similar for Ji .t/] and
that j0i is an eigenstate ofH0.

iv | ! Hall conductivity:

�xy.!/ D �
1

„!A

Z 1

0

h0j
�
Jy.0/; Jx.t/

�
j0i ei!tdt (1.68)

This is the AC Hall conductivity as it is still frequency dependent.

v | Set t0 D 0 and use U0.t/ D
P

n e
�iEnt=„jnihnj and Ji .t/ D U

�
0 .t/JiU0.t/:

!

�xy.!/ D �
1

„!A

Z 1

0

X
n

(
h0jJy jnihnjJxj0ie

i.En�E0/t=„

�h0jJxjnihnjJy j0ie
i.E0�En/t=„

)
ei!tdt (1.69a)

Integrate (using a regularization ! C i" to make the integral convergent)

D �
i

!A

X
n¤0

�
h0jJy jnihnjJxj0i

„! CEn �E0
�
h0jJxjnihnjJy j0i

„! CE0 �En

�
(1.69b)

vi | Take DC limit ! ! 0 and use 1
„!CEn�E0

D
1

En�E0
�

„!
.En�E0/2 CO.!2/:

(Note the i=! that must be canceled to render the expression finite!)

�xy $
i„

A

X
n¤0

h0jJy jnihnjJxj0i � h0jJxjnihnjJy j0i

.En �E0/2
(1.70)

This is the Hall conductivity expressed in terms of current matrix elements. Our → next
project will be a (quite tedious) reformulation of this expansion with the goal to re-express it
in terms of a topological invariant, namely the ← Chern number.

vii | Comment on the constant term:

For the derivation of Eq. (1.70) it is crucial thatX
n¤0

h0jJy jnihnjJxj0i C h0jJxjnihnjJy j0i

En �E0

D 0 (1.71)

which makes the constant terms of the Taylor expansion cancel (this avoids the divergence
for ! ! 0!).

One way to see this is from rotation invariance of the system in the x-y-plane (a quantum
Hall system should be rotation invariant about the axis of the magnetic field). In particular,
�xy should be invariant under the �=2-rotation Jx 7! Jy and Jy 7! �Jx (note that J is a
vector operator). This means thatX
n¤0

h0jJy jnihnjJxj0i C h0jJxjnihnjJy j0i

En �E0

Š
D �

X
n¤0

h0jJxjnihnjJy j0i C h0jJy jnihnjJxj0i

En �E0

(1.72)
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which implies Eq. (1.71) so that only the antisymmetric part of �xy survives.

Note that this is a quite general argument: If we decompose the 2D conductivity tensor into
symmetric and antisymmetric parts, � D �s C �a, and demand rotational invariance of the
tensor, i.e., � D R�RT for a 2D rotationmatrixR, we have �s D R�sR

T and �a D R�aR
T

separately. The only symmetric matrix invariant under rotations is proportional to the identity,
�s D �xx � 1, so that there cannot be a symmetric contribution to the off-diagonals (that is,
the Hall conductivity �xy). Thus the most general form of a rotation invariant conductivity
tensor is

� D

�
�xx �xy

��xy �xx

�
: (1.73)

1.4.2. The TKNN invariant

Here wewant to connect theHall conductivity [given by theKubo formula Eq. (1.70)] to the Chern number
and thereby explain the quantization of the former. To do so, we consider non-interacting electrons in a
two-dimensional periodic potential, so that the momentum space is a torus.

The rationale of the following discussion is similar to the original approach by Thouless et al. [17].

1 | ^ Single electron in a periodic potential with HamiltonianH0:

System size: Lx � Ly & periodic boundaries

We take the thermodynamic limit Lx ; Ly !1 later.

2 | ↓ Bloch theorem:

• Eigenfunctions: ‰nk D e
ikxunk.x/

with unk.x CR/ D unk.x/ for lattice vectors R and band index n D 1; 2; : : :

• Eigenenergies "n.k/ continuous in k! “Bands”

• ‰nkCK D ‰nk for reciprocal lattice vectors K

If R D anxex C anyey describes a square lattice with lattice constant a, the reciprocal
lattice is K D m1k1 Cm2k2 with ki D

2�
a

ei .

! Brillouin zone = Torus T 2
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Since our system is finite, momenta are discrete. The size of the Brillouin zone is determined
by the inverse lattice constant and remains fixed in the following.

3 | ^ Many-body Fock states with Fermi energy EF :

¡!While we can understand the integer quantumHall effect within the framework of non-interacting
fermions, the quantization of the Hall conductivity is a genuine quantum many-body phenomenon.
It is crucial that you understand the difference (and relation) between these concepts.

Ground state D j0i 7! j0i D Filled Fermi sea (1.74a)

Excited states D jni 7! jni D Fermi sea with particle-hole excitations (1.74b)

Current operator D Ji 7! Ji D Second-quantized current operator (1.74c)

In the following, bold states live in the fermionic Fock space (= many-body states), whereas states
in normal font live in the single-particle Hilbert space.

4 | Eq. (1.70)! Hall conductivity of fermionic many-body system:

�xy $
i„

A

X
n¤0

h0jJyjnihnjJxj0i � h0jJxjnihnjJyj0i

.En �E0/2
(1.75)

Note that the sum goes over all possible excited many-body states (which are all states except the
Fermi sea ground state). However, below we will see that only states with a single particle-hole
excitation contribute.

5 | Current operator = Single-particle operator:

Ji D

X
nk;mq

h‰nkjJi j‰mqi c
�
nk
cmq (1.76)

c
�
nk

: Creation operator for fermion in Bloch state j‰nki

Remember that this recipe produces an operator on Fock space that acts like the single-particle
operator Ji within the one-fermion subspace.
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6 | Eq. (1.75)! [Here nk0 is short for .nk/0 D n0k0.]X
n¤0

h0jJyjnihnjJxj0i

.En �E0/2
D

X
nk0;mq0

X
nk;mq

h‰nkjJy j‰mqih‰nk0 jJxj‰mq0i

X
n¤0

h0jc
�
nk
cmqjnihnjc

�
nk0cmq0 j0i

.En �E0/2„ ƒ‚ …
ınkDmq0 ımqDnk0 ı"m.q/>EF

ı"n.k/<EF

Œ"m.q/�"n.k/�2

(1.77)

$
X

nk;mq
"n.k/<EF <"m.q/

h‰nkjJy j‰mqih‰mq jJxj‰nki

Œ"m.q/ � "n.k/�2
(1.78)

To evaluate the sum
P

n¤0 over all excited many-body states, convince yourself that you can w.l.o.g.
replace the denominator by Œ"m.q/ � "n.k/�

2 (which is independent of n!). Then
P

n¤0 jnihnj

can be written as 1 � j0ih0j and the rest follows.

7 | Assume "n.k/ 7 EF for all k 2 T 2

¡! This means that the Fermi energy falls into a band gap. This is absolutely crucial for what follows.

(Note that statements like “"n < EF ” are now well-defined since "n.k/ < EF is true for all
momenta and only depends on the band index n.)

!

�xy $
i„

A

X
n;m

"n<EF <"m

X
k;q2T 2

(
h‰nkjJy j‰mqih‰mq jJxj‰nki

�h‰nkjJxj‰mqih‰mq jJy j‰nki

)
Œ"m.q/ � "n.k/�2

(1.79)

8 | As a first simplification, we want to get rid of one of the two momentum summations. To do so, we
must show that the current operator cannot change the momentum of a state:

i | Define the single-particle current operator

J WD e
i

„
ŒH0;x� (1.80)

This definition is motivated as follows: Physically, a sensible single particle current operator
must satisfy hJ i D e dhxi

dt
D Charge � Velocity. The ↓ Ehrenfest theorem tells us that

dhxi

dt
D

i
„
hŒH0;x�i which immediately suggests the definition (1.80). You can easily check

that for a free particle,H0 D
p2

2m
, it is J D e p

m
(as it should be).

ii | ^ Translation operator TR with lattice vector R:

TRxT �1
R D x CR (1.81a)

TRH0T
�1
R D H0 (1.81b)

TRj‰nki D e
ikR
j‰nki (1.81c)

• The first equation follows from the definition of the translation operator.

• The commutativity with the Hamiltonian follows from our assumption that the system
features a discrete translation invariance (“periodic potential”).
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• The energy eigenstates of such a Hamiltonian are Bloch states j‰nki which are also
eigenstates of these lattice translations (this is just the statement of ← Bloch’s theorem).

iii | Consequently

TRJT �1
R D i

e

„
ŒH0;x CR� D i

e

„
ŒH0;x� D J (1.82)

! J cannot change lattice momenta

Formally: h‰nkjJi j‰mqi D h‰nkjJi j‰mkiık;q

iv | Thus Eq. (1.79)!

�xy $
i„

A

X
n;m

"n<EF <"m

X
k2T 2

(
h‰nkjJy j‰mkih‰mkjJxj‰nki

�h‰nkjJxj‰mkih‰mkjJy j‰nki

)
Œ"m.k/ � "n.k/�2

(1.83)

9 | ^ Thermodynamic limit (in real space): Li !1

, Continuum limit (in momentum space): �ki �
2�
Li
! 0

! The sum over momenta turns into an integral over the Brillouin zone T 2:

�xy $ i„
X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
h‰nkjJy j‰mkih‰mkjJxj‰nki

�h‰nkjJxj‰mkih‰mkjJy j‰nki

)
Œ"m.k/ � "n.k/�2

(1.84)

• The continuum limit is convenient because we can now use tools from calculus to simplify
this expression further.

• Here we used the usual approximation of a Riemann sum:

1

Li

X
ki

D
1

2�

X
ki

2�

Li

Li !1

�����!

Z
dki

2�
(1.85)

Remember that A D LxLy .

10 | Our next goal is to get rid of the current operators:

i | Use j‰nki D e
ikxjunki (← Bloch theorem) and define QJ .k/ WD e�ikxJ eikx so that

h‰nkjJi j‰mki D hunkj
QJi .k/jumki (1.86)

¡! Note that in eikx, x is the position operator.

ii | Define QH0.k/ WD e
�ikxH0e

ikx so that

H0j‰nki D "n.k/j‰nki ,
QH0.k/junki D "n.k/junki (1.87)

iii | With these preliminaries, we can write:

QJi $
e

„

Q@i
QH0 with Q@i WD

@

@ki
(1.88)

To show this use the definition of QH0.k/ and show that Q@i
QH0 D i Œ QH0; x�.
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iv | Eqs. (1.84), (1.86) and (1.88)!

�xy $ i
e2

„

X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
hunkj

Q@y
QH0jumkihumkj

Q@x
QH0junki

�hunkj
Q@x
QH0jumkihumkj

Q@y
QH0junki

)
Œ"m.k/ � "n.k/�2

(1.89)

11 | Use

hunkj
Q@y
QH0jumki D hunkj

Q@y

�
QH0jumki

�
� hunkj

QH0j
Q@yumki (1.90a)

D Œ"m.k/ � "n.k/�hunkj
Q@yumki (1.90b)

D Œ"n.k/ � "m.k/�hQ@yunkjumki (1.90c)

The first line is just the product rule, in the second line we used that QH0 D QH
�
0 and that

hunkjumki D 0 for n ¤ m (which is the case in our expression for the Hall conductivity). The last
line follows if in the first line the derivative acts on the bra to the left instead on the ket to the right.

!

�xy $ i
e2

„

X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
hQ@yunkjumkihumkj

Q@xunki

�hQ@xunkjumkihumkj
Q@yunki

)
(1.91)

Yay! The denominator is gone…,

12 | Use X
m

jumkihumkj D 1 (1.92a)

)

X
mW"m>EF

jumkihumkj D 1 �
X

mW"m<EF

jumkihumkj (1.92b)

These statements are true on the subspace spanned by the Bloch functions junki for fixed k.

More rigorously, one should replace 1 by the projector Pk onto states with lattice momentum k

and do the derivatives in the expression for �xy properly; the result will be the same, though.

!

�xy $ i
e2

„

X
nW"n<EF

Z
T 2

d2k

.2�/2

n
hQ@yunkj

Q@xunki � h
Q@xunkj

Q@yunki

o
(1.93)

Only the term with 1 survives. The second term vanishes as it replaces the sum over empty bands
by a sum over filled bands. But then the sum in the expression for the Hall conductance vanishes
identically if one shifts the derivatives to the states withmk in the first term [using Eq. (1.90)] and
substitutes n$ m in the sums (the last step only works becausem and n now run over the same
range of filled bands).
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