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Preliminaries

Important

This script is in development and continuously updated. To download the latest version:

→ itp3.info/tqp

If you spot mistakes or have suggestions, send me an email:

→ nicolai.lang@itp3.uni-stuttgart.de

Requirements for this course

I assume that students are familiar with the following concepts:

• Non-relativistic quantum mechanics and second quantization
Fermions, bosons, spins,…

• Basics of condensed matter theory
Band theory, quasi particles, Fermi sea,…

• Basics of quantum information theory
Qubits, quantum gates,…

• Basics of group theory
(Non-)abelian groups, linear representations,…

Literature recommendations

This course follows no particular textbook but draws its inspiration from various sources.

Topological phases of non-interacting fermions (Part I):

• Bernevig & Hughes: Topological Insulators and Topological Superconductors [1]
ISBN 978-0691151755

Accessible introduction to topological phases of non-interacting fermions.

• Asbóth et al.: A Short Course on Topological Insulators:
Band Structure and Edge States in One and Two Dimensions [2]
ISBN 978-3319256054

Accessible brief introduction to topological phases of non-interacting fermions.

• Franz & Molenkamp et al.: Topological insulators [3]
ISBN 978-0444633187

Accessible and comprehensive introduction to topological insulators in two and more dimensions.
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• Shen: Topological Insulators: Dirac Equation in Condensed Matters [4]
ISBN 978-3642328589

Accessible introduction to topological insulators and superconductors.

• Moessner & Moore: Topological Phases of Matter [5]
ISBN 978-1107105539

Comprehensive introduction to topological phases of matter (including topological order).

Symmetry-protected topological phases of interacting bosons (Part II):

• Chen et al.: Classification of gapped symmetric phases in one-dimensional spin systems [6]
Original research on the classification of interacting spin systems in one dimension.
(Quite accessible, in particular the first sections of the paper.)

• Verresen et al.: One-dimensional symmetry protected topological phases and their transitions [7]
Original research on the classification of interacting systems of spins and fermions in one dimension.
(Quite accessible, in particular the introduction to the paper.)

Intrinsic topological order and long-range entanglement (Part III):

• Simon: Topological Quantum [8]
ISBN 978-0198886723

Thorough and modern introduction to many aspects of topological order (anyons, TQFTs,…).
I highly recommend this book!

• Pachos: Topological Quantum Computation [9]
ISBN 978-1107005044

Accessible introduction to anyon models and topological quantum computation.

• Moessner & Moore: Topological Phases of Matter [5]
ISBN 978-1107105539

Contains chapters on topological order and topological quantum computing (among others).

• Wen: Quantum Field Theory of Many-Body Systems [10]
ISBN 978-0199227259

Focus on field theory methods to describe quantum many-body systems.

• Wang: Topological Quantum Computation [11]
ISBN 978-0821849309

Very mathematical treatment of anyon models and topological quantum computation.

Mathematical Background

• Nakahara: Geometry,Topology and Physics [12]
ISBN 978-0750306065

Extensive, mathematically rigorous treatment of topology for physicists.

Milestones & Nobel Prizes

There are three nobel prizes directly related to the subject of this course:

• Nobel Prize in Physics 1985:

The Nobel Prize in Physics 1985 was awarded toKlaus vonKlitzing“for the discovery
of the quantized Hall effect.”

Related milestone paper:
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[13] K. v. Klitzing, G. Dorda, M. Pepper
New Method for High-Accuracy Determination of the Fine-Structure Constant
Based on Quantized Hall Resistance
Physical Review Letters, Vol. 45, p. 494-497 (1980)

Von Klitzing discovers the quantized Hall effect.

• Nobel Prize in Physics 1998:

The Nobel Prize in Physics 1998 was awarded jointly toRobert B. Laughlin,Horst
L. Störmer and Daniel C. Tsui“for their discovery of a new form of quantum
fluid with fractionally charged excitations.”

Related milestone papers:

[14] D. C. Tsui, H. L. Störmer, A. C. Gossard
Two-Dimensional Magnetotransport in the Extreme Quantum Limit
Physical Review Letters, Vol. 48, p. 1559-1562 (1982)

Tsui and Störmer discover the fractional quantum Hall effect.

[15] R. B. Laughlin
Anomalous Quantum Hall Effect:
An Incompressible Quantum Fluid with Fractionally Charged Excitations
Physical Review Letters, Vol. 50, p. 1395-1398 (1983)

Laughlin describes the fractional quantum Hall effect in terms of fractional charges.

• Nobel Prize in Physics 2016:

The Nobel Prize in Physics 2016 was awarded with one half to David J. Thouless,
and the other half to F. Duncan M. Haldane and J. Michael Kosterlitz
“for theoretical discoveries of topological phase transitions and topological phases of matter.”

Related milestone papers:

[16] J. M. Kosterlitz, D. J. Thouless
Ordering, metastability and phase transitions in two-dimensional systems
Journal of Physics C: Solid State Physics, Vol. 6, No. 7 (1973)

Kosterlitz and Thouless use methods from topology to describe the KT phase transition.

[17] D. J. Thouless et al.
Quantized Hall Conductance in a Two-Dimensional Periodic Potential
Physical Review Letters, Vol. 49, p. 405-408 (1982)

Thouless and coworkers explain the quantization of the Hall conductivity.

[18] F. D. M. Haldane
Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets:
Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State
Physical Review Letters, Vol. 50, p. 1153-1156 (1983)

Haldane uses methods from topology to describe the 1D Heisenberg antiferromagnet.

[19] F. D. M. Haldane
Model for a Quantum Hall Effect without Landau Levels:
Condensed-Matter Realization of the“Parity Anomaly”
Physical Review Letters, Vol. 61, p. 2015-2018 (1988)

Haldane predicts the anomalous quantum Hall effect without external magnetic fields.
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Goals of this course

The goal of this course is to gain a thorough understanding of topological concepts in modern
quantum many-body physics. You aquire the mathematical tools needed to describe topological
quantum phases, understand the physical features that characterize these systems, and learn
about potential applications.

In particular (★ optional):

(Gray topics are not yet covered by the script.)

Topological phases of non-interacting fermions (Part I):

• Integer quantum Hall effect

• Berry connection, Berry holonomy, Chern number

• Anomalous quantum Hall effect (Haldane model)

• Quantum spin Hall effect, topological insulators (Kane-Mele model)

• Pfaffian topological invariant

• Winding numbers, sublattice symmetry, edge modes (SSH model)

• Topological superconductivity (Majorana chain)

• Tenfold way and periodic table of topological insulators/superconductors

• Effects of interactions

• Topological bands in classical systems (topological metamaterials…) ★

Symmetry-protected topological phases of interacting bosons (Part II):

• Tensor network states, matrix product states, PEPS

• Projective representations and (twisted) cohomology groups

• Classification of bosonic topological phases in one dimension

• Haldane chain and AKLT model

Intrinsic topological order and long-range entanglement (Part III):

• Statistics of indistinguishable particles in 2+1 dimensions (Braid group)

• Toric code (anyonic excitations, topological entanglement entropy,…)

• Topological quantum memories

• Fibonacci anyons

• String-net condensates ★

• Topological quantum computation (non-abelian anyons, braiding, fusion,…)

• Mathematical framework
(Modular tensor categories, pentagon & hexagon relations, quantum dimension, topological spin,…)

• Application to foundational questions of high-energy physics (fermions,…) ★

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



PRELIMINARIES

ix
PAGE

Notes on this document

• This document is not an extension of the material covered in the lectures but the script
that I use to prepare them.

• Please have a look at the given literature for more comprehensive coverage. References
to primary and secondary resources are also given in the text.

• The content of this script is color-coded as follows:

– Text in black is written to the blackboard.

– Notes in red should be mentioned in the lecture to prevent misconceptions.

– Notes in blue can be mentioned/noted in the lecture if there is enough time.

– Notes in green are hints for the lecturer.

• One page of the script corresponds roughly to one covered panel of the blackboard.

• Enumerated lists are used for more or less rigorous chains of thought:

1 | This leads to…

2 | this. By the way:

i | This leads to…

ii | this leads to…

iii | this.

3 | Let’s proceed…

• In the bibliography (p. 171 ff.) you can find links ( Download ) to download most papers
referenced in this script. As most of these papers are not freely available, you need a
password to do so; this password is made available to students of my classes. Papers that
are open access are highlighted green ( Download ) and do not require a password.

• This document has been composed in Vim on Arch Linux and is typeset by LuaLATEX
and BIBTEX. Thanks to all contributors to free software!

• This document is typeset in Equity, Concourse and MathTimeProfessional.

Acknowledgements

• Thanks to Tobias Maier for finding typos and creating animations of the Berry curvature
of the QWZ model.
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Symbols & Scientific abbreviations

The following abbreviations and glyphs are used in this document:

cf confer (“compare”)

dof degree(s) of freedom

eg exempli gratia (“for example”)

etc et cetera (“and so forth”)

et al et alii (“and others”)

ie id est (“that is”)

viz videlicet (“namely”)

vs versus (“against”)

wlog without loss of generality

wrt with respect to

iff if and only if

^ “consider”

! “therefore”

¡! “Beware!”

$ non-obvious equality that may require lengthy, but straightforward calculations
�
D non-trivial equality that cannot be derived without additional input
ı
�! “it is easy to show”
�
�! “it is not easy to show”

) logical implication

^ logical conjunction

_ logical disjunction

� repeated expression

� anonymous reference

w/o “without”

w/ “with”

→ internal forward reference (“see below/later”)

← internal backward reference (“see above/before”)

↑ external reference to advanced concepts (“have a look at an advanced textbook on…”)

↓ external reference to basic concepts (“remember your basic course on…”)

→ reference to previous or upcoming exercises

★ optional choice/item

⁂ implicit or explicit definition of a new technical term (“so called…”)

‡ Aside

� Synonymous terms

WD Definition
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The following scientific abbreviations are used in this document:

2DEG 2-Dimensional Electron Gas
AC Alternating Current

BEC Bose-Einstein Condensate
CFT Conformal Field Theory
CS Chern-Simons
DC Direct Current

DMRG Density Matrix Renormalization Group
FQHE Fractional Quantum Hall Effect
IQH Integer Quantum Hall

IQHE Integer Quantum Hall Effect
ITO Invertible Topological Order
KT Kosterlitz-Thouless
LL Luttinger Liquid / Landau Level

LLL Lowest Landau Level
LU Local Unitary

MPS Matrix Product State
PTB Physikalisch Technische Bundesanstalt
QCD Quantum Chromo Dynamics
QFT Quantum Field Theory
QHE Quantum Hall Effect
SET Symmetry-Enriched Topological

SI Système International (d’unités)
SPT Symmetry-Protected Topological
SSB Spontaneous Symmetry Breaking
SSH Su-Schrieffer-Heeger
TIM Transverse-field Ising Model

TKNN Thouless-Kohmoto-Nightingale-Nijs
TO Topological Order
TP Topological Phase

TQC Topological Quantum Computation
TQFT Topological Quantum Field Theory
TQM Topological Quantum Memory
TQO Topological Quantum Order
YM Yang-Mills

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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↓ Lecture 1 [10.04.25]

0. Setting the Stage

◊ Topics

• Motivation: A classical system with topological edge modes

• Localization within physics: Where we are on the energy ladder

• Introduce our objects of interest: Quantum phases and phase transitions

• Sketch the Landau paradigm: Spontaneous symmetry breaking

• Concepts beyond the Landau paradigm: Topological phases

• Sketch different types of topological phases

0.1. Motivation: Transferring energy with pendulums

To get you hooked (hopefully!), we start with a series of simple classical mechanics “experiments” (= com-
puter simulations). The point of this adventure is to highlight some of the surprising effects topological
features can have (where exactly topology enters is not obvious and will be discussed in due time):

The following is inspired by on one of my papers [20].

Beamer and internet connection required!

1 | ^ 1D chain of N identical pendulums, coupled by tunable springs:

! Schematic view from bottom:

We encode the strength of springs by their color:
White: no spring / Light: soft spring / Dark: stiff spring

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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2 | Goal: Transfer oscillation energy from one boundary to the other:

Ex.t < 0/ D .1; 0; : : : ; 0/ � ei!t„ ƒ‚ …
Left pendulum excited

Time evolution
���������!

How??
Ex.t > T / D .0; : : : ; 0; 1/ � ei!t„ ƒ‚ …

Right pendulum excited

(0.1)

Here, xi .t/ denotes the displacement of pendulum i at time t ; our protocol starts at t D 0 and
ends at t D T . The eigenfrequency of the (identical) pendulums is !.

3 | Time evolution ! Classical equation of motion:

REx C D.t/Ex D 0 (0.2)

This is the Newtonian equation of motion forN coupled harmonic oscillators.

D.t/ 2 RN �N : Time dependent coupling matrix

4 | Rules:

• We can choose the stiffness for each spring independently.

• We can modify the stiffness of an arbitrary subset by a single time dependent factor.

• We can choose the time dependence of this factor freely.

! Allowed form of the coupling matrix:

D.t/ D

0BBB@
!2

1 s1
s1 !2

2 s2
s2 !2

3
: : :

1CCCA
„ ƒ‚ …
Static springs & pendulums

CD.t/

0BBB@
0 d1

d1 0 d2

d2 0
: : :

1CCCA
„ ƒ‚ …

Time dependent springs

(0.3)

With…

• !i D
p
g=li � !: Frequency of pendulums (uniform and fixed)

• si : Static stiffness of spring coupling pendulums i and i C 1

• D.t/ � di : Time dependent stiffness of spring coupling pendulums i and i C 1

• Global time dependence of spring stiffness:

D.t/ D

8̂<̂
:
0 t < T

P.t/ 0 � t � T

0 t > T

with pulse shape P.t/ W Œ0; T � ! Œ0; 1� (0.4)

! Schematic view:

We color static (tunable) springs in shades of black (red). The shape ofD.t/ is plotted below the
pendulum chain; the current point in time is marked by a vertical line in this plot.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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5 | Questions:

• How to choose the spring couplings si and di?

• How to choose the pulse shape P.t/?

6 | Experiments:

The simulations below are based on numerical integration of Eq. (0.2) with initial configuration (0.1):

→Download Mathematica notebook

i | ^ Variant 1:

si D 0 and di D d > 0 for all i D 1; : : : ; N � 1 (0.5)

In this approach, we couple all pendulums uniformly by springs of time dependent stiffness:

As pulse P.t/ we choose a smoothed-out rectangular double pulse to transfer the excitation
from left to right and back. The latter is of course not necessary; it allows us to amplify the
effects of a single transfer. We normalize the pulse such that maxt P.t/ � 1.

! Simulation: Click on figure (internet required).

https://itp3.info/pendulumv1

! Result: No perfect transfer possible! /

The reason is quite obvious: The boundary excitation is transferred via an elastic wave that
travels through the bulk. Because of ↓ dispersion, this excitation cannot be relocalized on the
other boundary; we loose inevitably energy to bulk excitations.

ii | ^ Variant 2: (We assumeN to be even!)

si D 0 and di D d > 0 for odd i D 1; 3; : : : ; N � 1 (0.6a)

si � 2 � d and di D 0 for even i D 2; 4; : : : ; N � 2 (0.6b)

Now we couple pendulums alternating with weak & dynamic and strong & static springs:

• We use the same pulse P.t/ as for Variant 1 above. Now it affects only every other
spring, of course!

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART
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• If you wonder how one might come up with this contraption: This is why you should
attend this course,.

! Simulation:

https://itp3.info/pendulumv2

! Result: (Almost) perfect transfer possible! ,,

• The video above is“stroboscopic”, i.e., the pendulums are oscillatingwith amuch higher
frequency; the visible oscillations are therefore determined by the actual frequency
and the chosen frame times (↓ beat frequency). The transfer also works with lower
frequencies (as in the Variant 1 video above), but would then take much longer.

• The reasonwhy this approachworks perfectly is not obvious. In particular, its robustness
to certain types of disorder (→ next) are not trivial to understand. We need to introduce
quite a bit of machinery to tackle this problem (→ much later).

What happens to this method if the constituents of our contraption have Imperfections?

a | ^ Imperfect springs:

si D 0 and di 2 N .d; �d / for odd i (0.7a)

si 2 N .2d; �s/ and di D 0 for even i (0.7b)

• N .�; �/ denotes the ↓ normal distribution with mean � and standard deviation � .

• We choose �d � 0:1 � d and �s � 0:1 � 2d , i.e., tolerances of about 10%.

! Wemodify all non-zero spring couplings randomly by a small amount:

! Simulation:

https://itp3.info/pendulumv2a

! Result: Still perfect transfer possible! ,
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• ¡! This is not what one typically expects for an imperfect system. In particular for
rather large imperfections of about 10%.

• To achieve perfect transfer, one has to tune the pulse slightly (either its height or
its duration). However, one always finds an appropriately tuned pulse that achieves
(almost) perfect transfer.

• Note that even if the pulse is not tuned, there is (almost) no energy loss to bulk
modes. A non-optimal pulse therefore leads to an incomplete transfer but not to
losses.

• If you look closely, there actually are weak excitations of the pendulum pairs in the
bulk after the double transfer. This is a consequence of weak adiabaticity breaking;
an ideal transfer would take infinitely long.

b | ^ Imperfect pendulums:

Eq. (0.6) together with !i � ! 7! !i 2 N .!; �!/ (0.8)

We choose �! � 0:1 � !, i.e., tolerances of about 10%.

! Wemodify all frequencies (= lengths of pendulums) !i randomly by a small amount:

! Simulation:

https://itp3.info/pendulumv2b

! Result: No perfect transfer possible! /

• This is the typical effect one might expect for an imperfect system.

• If one optimizes over the pulse length (or height), one typically does not find a
pulse that achieves perfect transfer.

• Note that there is still no energy loss to bulk modes. This means that for small-
enough imperfections, the time-evolution remains almost adiabatic.

• That the two boundary pendulums oscillate with drastically different periods is
a consequence of the frequency imperfections (which of course also affect the
boundary pendulums) in combination with the“stroboscopic” visualization.
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7 | ! Many questions…

1. Why does Variant 2 work? Where do these “boundary modes” come from?

2. Why is this procedure robust against one type of disorder, but not the other?

3. What has this to do with topology?

4. What has this to do with quantum mechanics?

Answers: → Later

For the impatient: The first three questionswill be answered in ??. How some features of topological
quantum phases translate to classical systems is discussed in ??.
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0.2. The Big Picture

Physics strives for an objective, operational description of nature. To do so systematically, it is convenient
to slice reality into layers separated by energy-, time- and length scales:

See script on
→ Special- and General Relativity

See script on
→Topological Quantum

Many-Body Physics
(this script)

See script on
→Quantum Field Theory

We are here!
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Comments:

• In this course we neither study the very small (↑ high-energy physics) nor the very large (↓ relativity).
Thus we are not concerned with fundamental physics but with emergent phenomena.

• While this course is clearly focused on the mathematics and conceptual foundations that underlie
the phenomenology of topological quantum phases, there will be connections to both experiments
and applications along the lines. In particular the applications differentiate this course from more
fundamental topics close to the extremes of the energy scale.

• At the very end (→ ??), we will briefly discuss a scenario where some of these emergent properties
(related to topological order) might be of relevance for fundamental questions of high-energy
physics. Maybe the realm of particle physics is emergent as well, and the theory of topological
quantum many-body physics has something to say about questions that conventional high-energy
physics is silent about? (For example, why there are fermions to begin with?)

The topics covered in this course can also be located with respect to adjacent scientific disciplines:

Topological Phases of
non-interacting Fermions

Part I

Symmetry-protected
Topological Phases

of interacting Bosons
Part II

Intrinsic Topological Order
Part III

Topological
Quantum
Computing

??

Quantum computing

• ↑ Topology is the area of mathematics that deals with properties of spaces (e.g. manifolds) that are
robust against smooth deformations of these spaces. For example, the topology of a torus (= donut)
is characterized by the fact that it has a single “hole”; its exact shape (e.g. its size and local bumps
on the surface) are part of its geometry but not relevant for its topology.

• Which, why, and how concepts of topology are instantiated in particular quantum phases is the
main focus of this course.
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0.3. Quantum phases and quantum phase transitions

1 | In this course, we are interested in the following concepts:

⁂ Definition: Quantum phases and phase transitions

• Quantum phase , Phase of matter at T D 0 (= no thermal fluctuations)

, Ground state manifold of8<: scalable
local

many-body

9=; Hamiltonian in the thermodynamic limit

– “Scalable” : TheHamiltonian is actually a family of HamiltoniansHL parametrized
by the system sizeL (e.g., number of modes/atoms/spins in each spatial direction).

– “Local”: The Hamiltonian is a sum of operators that act only on a finite number
of adjacent degrees of freedom (i.e., no long-range interactions).

– “Many-body”: The Hamiltonian describes the interactions of extensively many
degrees of freedom (spins, particles).

– “Thermodynamic limit”: We are interested in the ground state properties for
infinitely large systems, i.e., in the limit L ! 1.

• In this course, we are mostly interested in a particular subclass of quantum phases:

Gapped quantum phase , Ground state manifold of

Hamiltonian with a stable bulk gap

– “Bulk gap”: Spectral gap between the ground state manifold and the first excited
states of a system with periodic boundaries. Systems with boundaries may have
eigenstates that cross this gap.

– “Stable” : The gap remains finite in the thermodynamic limit L ! 1.

• Naturally, we are also interested in transitions between quantum phases:

Quantum phase transition , Transition between different quantum phases

(in the thermodynamic limit)

, Qualitative change of macroscopic properties
triggered by small changes of microscopic parameters

Comments:

• ¡! In this course we consider exclusively quantum phases; hence we drop the term“quantum”
in the expressions defined above in many cases.

• Quantum phases are characterized by properties that emerge frommany particles that interact
quantum-mechanically. We are therefore interested how macroscopic quantum properties
emerge from microscopic quantum interactions.

• Thus, the study of quantum phases and phase transitions is particularly challenging, because
computing the ground state(s) of large, interacting quantum systems is hard if not impossible.
(The Hilbert space dimension grows exponentially with the system size L!)

Broadly speaking, there are four attack vectors:
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(1) Solve models analytically…

(a) …with exact methods.
(↑ Bethe ansatz, → Stabilizer formalism,→ Quadratic theories,…)

(b) …with approximate methods.
(↓ Perturbation theory, ↑ Mean-field theory, ↑ Quantum field theory,…)

(2) Solve models numerically (on classical computers).
(↓ Exact diagonalization,→ DMRG, ↑ Quantum Monte Carlo,…)

(3) Perform quantum simulations.
(→ Analog quantum simulation, ↑ Digital quantum simulation,…)

(4) Last but not least: conduct experiments.

Here we focus on approach (1a); in some exercises you will make contact with approach (2).

• Quantum phase transitions are triggered by changes of parameters in the Hamiltonian (e.g.
interaction strengths, chemical potentials, hopping rates,…). (Quantum) phase diagrams
are therefore plotted as functions of parameters of the Hamiltonian, and not temperature or
pressure [as you learned in your course on ↓ (classical) statistical physics].

• Quantum phases at T D 0 are properties of pure quantum states without entropy. By contrast,
classical phases (like crystalline phases of solids, or the liquid phase of water), are properties
of statistical ensembles of states with finite entropy; in the framework of quantum mechanics,
these are described by density matrices [for example, the Gibbs state � D e�ˇH=Z of the
↓ canonical ensemble].

• Classical thermodynamic phase transitions (e.g., the boiling of water) are driven by thermal
fluctuations that modify the statistical ensemble of microstates, such that its macroscopic
observables change qualitatively. By contrast, quantum phase transitions are driven by quan-
tum fluctuations (due to non-commuting terms in the Hamiltonian, → below). These modify
the amplitudes of basis states in the (pure!) ground state of the system, thereby changing its
quantum-mechanical properties qualitatively (correlations, entanglement structure,…).

• ¡! Quantum fluctuations are not dynamical fluctuations in time. The ground state is an
eigenstate and therefore time-independent. However, if you would initialize the system in a
classical product state which is not an eigenstate (in particular, not the ground state), then it
would fluctuate in time, because the ground state is actually a superposition of many different
such classical product states.

2 | Examples of quantum phases that exist in nature and/or can be experimentally realized:

• ↓ Superconductors

• ↓ Superfluids (e.g. superfluid Helium…)

• ↑ Supersolids (have been recently realized in experiments [21–23])

• ↓ Bose-Einstein condensates (BEC)

• ↓ Fermi liquids

• → Quantum Hall states

• …

While these are important examples, they are typically hard to describe and understand theoretically.
It is therefore advisable to focus on a simple “toy model” that is exactly solvable:
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↓ Lecture 2 [11.04.25]

3 | Paradigmatic example:

i | ^ Periodic 1D chain of L spin-1
2
with Hamiltonian:

⁂ Transverse-field Ising model (TIM):

HTIM D �J

LX
iD1

�´
i �

´
iC1 � h

LX
iD1

�x
i (0.9)

where…

• J � 0: ferromagnetic coupling strength

• h � 0: transverse magnetic field

“Transverse” since h points in x-direction, which is transverse to the ´-direction of the
ferromagnetic Ising interactions.

ii | Observation: �
�´

i �
´
iC1; �

x
i

�
¤ 0 (0.10)

!The Ising interactions and themagnetic field terms cannot be diagonalized simultaneously!

! Quantum fluctuations

! Ground state(s) = (entangled) superpositions of product states j"# : : :i for h ¤ 0

Product states of the form j"# : : :i are eigenstates of the classical Ising interaction �´
i �

´
iC1.

iii | Two qualitatively different parameter regimes:

a | J � h:

J � 0 ! Gapped phase with unique ground state:

j�Ci � jC C � � � Ci (0.11)

^ Spin-spin correlations:

h�Cj�´
i �

´
j j�Ci

ji�j j!1
�������! 0 (0.12)

! ⁂ Paramagnetic phase (=disordered phase)

• Note that h�Cj�´
i j�Ci D 0, i.e., measuring any spin yields˙1with equal probabil-

ity. The vanishing of spin-spin correlations (0.12)means that there is no correlation
between these random outcomes for distant spins. That is, there is no order in the
ground state.

• For J D 0 and h > 0 the system has a stable bulk gap of�E D 2h, independent
of L (the energy cost of flipping a single spin from jCi to j�i).

b | J � h:
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h � 0 ! Gapped phase with two-fold degenerate ground state manifold:

j�i � ˛ j"" : : : "i„ ƒ‚ …
j�"i

Cˇ j## : : : #i„ ƒ‚ …
j�#i

(0.13)

^ Spin-spin correlations:

h�j�´
i �

´
j j�i

ji�j j!1
�������! 1 (0.14)

This is true for arbitrary amplitudes ˛ and ˇ!

! ⁂ Ferromagnetic phase (ordered phase)

• Note that now h�j�´
i j�i R 0 depends on the particular values of ˛ and ˇ; for the

“classical” product states it is h�"#j�´
i j�"#i D ˙1. However, the non-vanishing

correlations (0.14) imply in any case that ´-measurements of distant spins are
correlated. That is, there is order in the ground state.

• For J > 0 and h D 0 and periodic boundaries, the system has a stable bulk gap of
�E D 4J , independent of L (the energy cost of flipping a contiguous domain of
spins, e.g., j""""i 7! j"##"i).

iv | ! The ´-magnetization �´
i is a ⁂ local order parameter for the ferromagnetic phase:

lim
ji�j j!1

h�´
i �

´
j i D 0 in the paramagnetic (disordered) phase (0.15a)

lim
ji�j j!1

h�´
i �

´
j i ¤ 0 in the ferromagnetic (ordered) phase (0.15b)

• The very fact that there is a local order parameter that characterizes the ferromagnetic
phase makes this particular kind of order locally testable, i.e., by looking at a finite patch
of the system, you can decide whether you are in the ferromagnetic or the paramagnetic
phase. This makes the ferromagnetic phase a counterexample of a topological phase
(→ later).

• Note that ŒH; �´
i � ¤ 0, i.e. correlations of this observable at two distant points are a

non-trivial phenomenon.

v | Comments:

• So far we only made heuristic arguments regarding the ground states of the TIMHamil-
tonian (0.9). Fortunately, this model can be solved exactly! Despite the simplicity
of the Hamiltonian, this calculation is not straightforward and requires quite a bit of
machinery; you solve the model on → Problemset 7 → later.

• While the TIM Hamiltonian clearly has a stable bulk gap in the two extreme cases
(J D 0 and h > 0 vs. J > 0 and h D 0), it is not clear what happens when one
adds small perturbations. For example, whether the gap stays open for J > 0 and
0 < h � J is not obvious. The problem is that the gap�E is of order unity, but the
total operator norm of the magnetic field perturbation goes like h�L, which diverges in
the thermodynamic limit L ! 1 for arbitrarily small perturbations h > 0. In general,
bulk gaps can therefore vanish under infinitesimally small perturbations! [For the TIM
this does not happen, and the gap remains open for up to some critical value hc of the
magnetic field, but this must be proven (→ Problemset 7).]
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0.4. Spontaneous symmetry breaking

vi | What happends between the two gapped phases for J � h and J � h?

Since the ground state degeneracy of the two gapped phases is different, the gap must close
at some critical ratio gc D h=J .

As noted above, we cannot exclude gc D 0 or gc D 1 with our current knowledge. Here
we assume that 0 < gc < 1 (which turns out to be correct).

! Schematic spectrum:

You compute this spectrum exactly later on → Problemset 7.

vii | Tentative Phase diagram:

! Order parameter continuous at phase transition

Again, this is not obvious; but solving the model exactly shows that it is true.

viii | ! ⁂ Continuous (second-order) phase transition:

This is the most typical situation (at least for the models studied in this course), with the
following features at the phase transition:

• Bulk gap closes

• Long-range fluctuations and self-similarity
(= quantum fluctuations on all length scales)

• Effective conformal field theory (CFT) description

• Algebraic decay of correlations
(As compared to exponential decay in gapped phases.)
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ix | What characterizes the phase transition?

Lev Landau: Spontaneous symmetry breaking!

Landauwas awarded the Nobel Prize in Physics 1962 for his pioneering work on describing
quantum phases of matter, especially the superfluid phase of liquid Helium.

(1) ^ Symmetry group GS of the TIM Hamiltonian (0.9):

GS D f1; Xg ' Z2 with X WD

LY
iD1

�x
i (0.16)

X realizes a global flip of all spins: j"i $ j#i.

Check that ŒH TIM; X� D 0. Note thatX2 D 1 so thatGS ' Z2.

(2) ^ Symmetry groups GE of the TIM ground states Eqs. (0.11) and (0.13):

• Paramagnetic phase:

G
.para/
E D f1; Xg D GS since X j�Ci D j�Ci (0.17)

! ⁂ Symmetric phase

• Ferromagnetic phase:

G
.ferro/
E D f1g ¨ GS since X j�"i D j�#i ¤ j�"i (0.18)

! ⁂ Symmetry-broken phase

¡! Important

In the ferromagnetic phase, the ground states j�"=#i spontaneously break the symmetry
groupGS of the HamiltonianHTIM.

! ⁂ Spontaneous symmetry breaking (SSB)

Landau’s paradigm (Spontaneous symmetry breaking)

4 | This concept extends to many quantum phases and their phase transitions (e.g. superconductors/-
superfluids where the particle number symmetryGS D U.1/ is spontaneously broken) and is also
applicable to classical phases and phase transitions (e.g. the transition from liquid to solid where
rotation and translation symmetry are broken down to crystallographic subgroups).

! Phases are characterized by the symmetries they break & preserve:

Labels of phases = Subgroups G.i/
E of symmetry group GS

• This concept covers many (quantum and classical) phases and phase transitions, but in the
realm of quantum mechanics there is more than just symmetry breaking—there is entangle-
ment! This will become important → below…
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• For the TIM the symmetry groupGS has only itself and the trivial group as subgroups. In
general, GS can be much larger so that many non-trivial subgroups exists (and therefore
many different phases are possible). For example, if GS D E.3/ is the Euclidean group
of three-dimensional space (continuous rotations and translations), then GS contains all
possible space groups (symmetry groups of crystals) as subgroups.

5 | Comments:

• Note that the spontaneous symmetry breaking of the TIM in 1D is not forbidden by the
↑ Mermin-Wagner theorem because the broken symmetry is discrete (Z2).

• In one dimension, the spontaneous symmetry breaking (and the ferromagnetic phase) does
not survive at finite temperatures T > 0. (Recall that the classical Ising model does not
have a thermodynamic phase transition in one dimension, i.e., there is no ferromagnetic
phase in a classical 1D Ising chain since domain walls can move without energy penalty.)
The quantum phase transition of the 1D TIM is therefore a genuine quantum phenomenon,
without classical counterpart.

• By contrast, in two dimensions (and above) the spontaneous symmetry breaking (and the
ferromagnetic phase) does survive at finite temperatures T > 0. (Recall that the classical 2D
Ising model has a thermodynamic phase transition at a critical temperature Tc below which
it enters a ferromagnetic phase that breaks ergodicity.)

• A note on“symmetry breaking” in the quantum case:

The ground state (for h D 0 and J > 0)

j�si WD
1p
2
j�"i C

1p
2
j�#i D

1p
2
j"" : : : "i C

1p
2
j## : : : #i (0.19)

is clearly symmetric under global spin-flips: X j�si D j�si. So what about the symmetry
breaking? (Note that this is something without analog in a classical setting where you cannot
superimpose arbitrary ground states to form new ground states.)

Mathematically, the two symmetry breaking states j�"i and j�#i belong to different ↑ su-
perselection sectors in the thermodynamic limit (they don’t live in the same Hilbert space). As
a consequence, the “symmetric state” j�si is not a state in the Hilbert space of the infinite
system (strictly speaking, this is the mathematical manifestation of SSB); ↑ Refs. [24–26].

Physically, the symmetry-broken states j�"=#i behave very differently than the symmetry-
invariant states j�"i ˙ j�#i: Local measurements (of �´

i ) immediately collapse the latter
into a mixture of the former. I.e. the symmetric states are extremely fragile (in contrast
to the symmetry-broken states). Thus, in an experiment, one would always observe the
symmetry-broken states, so that the notion of “spontaneous symmetry breaking” effectively
carries over to the quantum realm.

0.5. Extending Landau’s paradigm: Topological phases

6 | To understand the deficits of Landau’s paradigm, and the conceptual possibility of topological
phases, we first need a mathematically more rigorous definition of quantum phases (without
spontaneous symmetry breaking!):

⁂ Definition: Gapped quantum phases (formal version)

^ Gapped, local HamiltoniansHa andHb with unique ground states j�ai and j�bi.

These two many-body ground states belong to the same quantum phase if and only if there is
a family of gapped and local Hamiltonians OH.˛/ (which depends continuously on a parameter
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˛ 2 Œ0; 1�) such that

Ha D OH.0/ and Hb D OH.1/ : (0.20)

• The two constraints“gapped” and“local” ensure that the macroscopic properties of the
ground states only change gradually along the path. (This precludes the traversal of phase
boundaries where macroscopic properties change qualitatively.)

• ¡! Note that, strictly speaking, the two HamiltoniansHa andHb [and the family OH.˛/] are
meant to be sequences of Hamiltonians for increasing system sized L ! 1. The condition
that the gap remains open along the parameter path thus refers to the thermodynamic limit
L ! 1, and not to any finite system. (Note that every finite system has a trivial gap that
separates its ground state manifold from the first excited states!)

• The above definition can be extended in a straightforward way to systems with finite (but
non-extensive) ground state degeneracies. This allows for an extension of the following
concepts to symmetry-broken phases as well (→ below).

7 | ^ Parameter-space of local Hamiltonians (without SSB, GE D GS ):

�
�! InD � 2 dimensions the parameter space decomposes into “islands” of gapped Hamiltoni-
ans that cannot be connected without closing the gap:

• Trivial phase: Ground state = disentangled product state
(e.g. j�Ci D jCi ˝ jCi ˝ � � � or j�"i D j"i ˝ j"i ˝ � � � )

• Topological phase: Ground state = long-range entangled state
(different patterns of long-range entanglement = different topological phases)

Comments:

• The fact that one-dimensional systems cannot have intrinsic topological order is not obvious.

It follows because the ground states of gapped 1D Hamiltonians (without SSB) are short-
range correlated and feature an area law (the entanglement entropy between different parts
of the sytem is constant) [27, 28]. One can therefore encode these states as (short-range
correlated) → matrix-product states (MPS) with finite → bond dimension. It then follows that
states of this form can always be mapped to a product state by a quantum circuit of finite
depth (→ below) [6].

• ¡! In this course, we often dinstinguish between fermionic systems and bosonic systems. Since
in our context bosonic systems make only sense with interactions (→ below), we also count
spin systems to this class and often use the terms interchangeably. What makes (interacting)
systems bosonic is therefore not so much the existence of an infinite-dimensional bosonic
Fock space, but rather that the operator algebras of local degrees of freedom commute. Note
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that spin-1
2
(or ↓ qubits) are equivalent to ↓ hard-core bosons (→ Problemset 1), i.e., bosons

with an infinite, repulsive on-site interaction.

• This splitting can also occur for Hamiltonians with SSB and a fixed subgroupGE . We will
not discuss this case in this course (→ below).

• Strictly speaking, the statement that there is no topological order in 1D is only true for bosonic
systems (or spin systems). For 1D systems of fermions, there is a single non-trivial topological
phase realized by the → Majorana chain (Chapter 5) [29]. The subtle distinction between 1D
bosonic and fermionic systems can be traced back to the non-locality of the → Jordan-Wigner
transformation that translates between them, and the fact that parity is a locality constraint
for fermionic systems.

8 | There is an alternative (but mathematically equivalent) definition of quantum phases in terms of
local unitary circuits with constant depth:

^ ⁂ Local unitary (LU) circuit of depthDL:

�
�! j�ai and j�bi belong to the same quantum phase, if and only if

j�ai D UQCj�bi (0.21)

where UQC is a local quantum circuit of constant depthDL D const for L ! 1.

• This characterization clarifies that two states belong to the same quantum phase if they share
the same“pattern of long-range entanglement” since this pattern can only be modified by
long-range unitary gates (and not a LU-circuit of constant depth).

• With this characterization, it follows that a ground state j�ai is long-range entangled (=
topologically ordered) iff it cannot be transformed into a trivial product state j""" : : :i by a
constant-depth quantum circuit that is local wrt. the geometry of the system.

• This definition can be shown to be equivalent to the one given in the definition above [30].
The unitary can be explicitly expressed as

UQC D P exp
�
�i

Z 1

0

d˛ QH.˛/

�
(0.22)

where P denotes the path-ordered exponential and QH.˛/ is a sum of local Hermitian opera-
tors that is related (but generally not identical) to the gapped path OH.˛/.

• This makes the preparation of topologically ordered states experimentally challenging for
quantum computers and quantum simulators with locality constraints: Quantum computers
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must apply quantum circuits with a depth (= run time) that scales with the systems size. Simi-
larly, quantum simulators that rely on adiabatic preparation schemes must cross a topological
phase transition – which requires the duration of the preparation protocol to scale with the
system size as well.

First extension of Landau’s paradigm: (Intrinsic) Topological order

9 | The concept of long-range entanglement and equivalence via LU-circuits suggests the following
extension of the classification of (gapped) quantum phase of matter:

This motivates the definition:

⁂ Definition: Topological order (TO)

⁂ (Intrinsic) Topological order WD Patterns of long-range entanglement

• We discuss this concept at the end of this course: → Part III

• ¡! Sometimes the term“topological order” is used sloppily in the literature to refer to any
phase of matter with some topological characteristics (e.g., → symmetry-protected topological
phases). Then the modifier “intrinsic” is used to refer to states with non-trivial long-range
entanglement. In this course “topological order” always refers to long-range entangled
states; however, we still might add“intrinsic” to emphasize this point. By contrast, the term
“topological phase” is used much broader and refers to any quantum phase with topological
features.
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↓ Lecture 3 [17.04.25]

10 | Examples for topologically ordered systems that exist in nature (or in laboratories):

• Fractional quantum Hall states

Yes, this is all we actually know of (except for some special cases, see below)! There is a plethora
of theoretical models, some of which are actively studied in labs; but none of them have been
experimentally realized and characterized to the degree that fractional quantum Hall states have.
Examples of promising models that are theoretically known to be topologically ordered and actively
experimentally studied include ↑ topological quantum spin liquids like the → toric code (→ ??) [31, 32],
↑ Kitaev materials [33], and ↑ fractional Chern insulators [34].

• But actually, that’s not quite correct:

Integer quantum Hall states, first observed in 1980 byKlaus von Klitzing [13], are
also long-range entangled, i.e., cannot be transformed into product states via constant-depth
LU circuits [35]. However, their long-range entanglement is of a particularly simple type
(so called invertible topological order, → below) that does not give rise to anyonic excitations
and topological ground state degeneracies (→ Part III, see also Ref. [36]) which makes non-
invertible topological orders like fractional quantum Hall states so interesting. This is why
some use a different nomenclaturewhere“topologically ordered”only refers to non-invertible
topological order with anyonic excitations and non-vanishing → topological entanglement
entropy [37].

• But aaactually…that’s also not quite correct:

Surprisingly, conventional s-wave superconductivity in 3D systems (discovered in 1911 by
Heike Kamerlingh Onnes) is also an example of intrinsic topological order [35, 38].
This is not true for simplistic models like the BCS-Hamiltonian where the electromagnetic
gauge field is treated as a non-dynamical background. In the real world, however, the gauge
field is dynamical and a superconductor is described by the interactions between charged
particles (electrons) with themselves (which gives rise to pairing) and with the dynamical
electromagnetic field (which gives rise to string-like excitations, namely quantized ↑ flux
tubes, and massive photons). The combined system of charges and electromagnetic field
turns out to be topologically ordered [39, 40] and is described by a ↑ topological quantum
field theory called ↑ BF-theory [41]. The excitations of such systems are (1) Bogoliubov
quasiparticles (“broken Cooper pairs”), (2) flux lines/loops, and (3) massive photons. The
Bogoliubov quasiparticles have non-trivial braiding statistics with the flux lines/loops – which
demonstrates the (non-invertible) topological order of such systems.

11 | ‡ Invertible topological orders (ITO):

With our definition of gapped quantum phases, one can define a“multiplication” of such phases:

^ Two topological phases A and B (in the same dimension):

A � B„ ƒ‚ …
Stacking two TOs

D C„ƒ‚…
New TO

(0.23)
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Observation: Trivial phase E (= product states) acts as identity:

A � E D A (0.24)

! Commutative monoid of quantum phases [42]

In mathematics, a ↓ monoid is a set with an associative binary operation and an identity. It is
commutative if the binary operation is abelian. Elements are not required to have inverse elements
(if all elements have inverse elements, the monoid becomes a group).

^ Class of topological phases that have an inverse element:

⁂ Definition: Invertible topological order (ITO)

⁂ Invertible TOs (ITO) WD
˚

A j 9A�1 W A � A�1 D E
	

• The class of ITOs forms a group within the monoid of TOs.

• If they exist, the inverse phases are given by a time-reversal operation [43].

• In words: A topologically ordered ground state is invertible if and only if you can find another
ground state (of a gapped, local Hamiltonian) such that the combination of both can be
transformed into a product state by a constant-depth LU circuit.

�
�! The entanglement patters of ITOs are of a particularly simple kind [42,43]:

ITO ,

(
No → anyons
Vanishing → topological entanglement entropy

In that sense, ITOs are a rather “boring” type of long-range entanglement, which is why some do
not refer to ITOs as topologically ordered in the first place (in this course, we do).

Examples [35, 44]:

• → Integer quantum Hall states in 2D (Chapter 1)

• → Haldane model in 2D (Chapter 2)

• → Kane-Mele model (Topological insulator) in 2D (Chapter 3)
(This is the only example in this list that is truly short-range entangled.)

• → Majorana chain in 1D (Chapter 5),

So despite their lack of fancy anyonic statistics, ITOs are not so boring after all and we will study
them in detail (and discover much interesting physics).
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12 | But wait! There is more…

Adding patterns of long-range entanglement to our labeling scheme produces a more fine-grained
classification of quantum phases. However, it can be useful to make this classification even more
fine-grained by adding additional symmetry constraints.

We can motivate this rationale by a classical analog:

★ Interlude: Restrictions on perturbations

^ Phase diagram of water:

(This argument draws inspiration from classical thermodynamic phases, not quantum phases.)

! Restrictions on allowed paths can be useful! (depending on the system…)

13 | ! Restrict Hamiltonians by (protecting) symmetriesGP � GS :

⁂ Definition: Symmetry-protected quantum phases

^ Gapped, local HamiltoniansHa andHb with unique ground states j�ai and j�bi, and a
symmetry groupGP (represented by unitaries Ug on the Hilbert space) with ŒHx ; Ug � D 0

for all g 2 GP and x D a; b.

The ground states belong to the same symmetry-protected quantum phase if and only if there
exists a family of gapped and local Hamiltonians OH.˛/ that depends continuously on ˛ 2 Œ0; 1�

such that

Ha D OH.0/ and Hb D OH.1/ (0.25)

and h
OH.˛/; Ug

i
D 0 for all g 2 GP and ˛ 2 Œ0; 1� : (0.26)

14 | ! Phases with the same entanglement pattern can split further:

In particular short-range entangled phases that belong to the trivial phase!
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! Conventional nomenclature:

⁂ Definition: SPT and SET phases

• ⁂ Symmetry-protected topological (SPT) phases WD

Short-range entangled phases protected by symmetries

• ⁂ Symmetry-enriched topological (SET) phases WD

Long-range entangled phases with additional symmetries

We use the terms“SPT(s)” and“SET(s)” to mean“symmetry-protected/enriched topologi-
cal quantum phase(s)” whenever the context requires it.

Comments:

• Typical examples for SPT phases are the → SSH chain in 1D (Chapter 4) and the → topological
insulator in 2D (Chapter 3).

• Typical examples for SET phases are ↑ factional quantum Hall states with protected U.1/
symmetry (= particle number conservation) [35].

• We will not study SET phases in this course!

• Since SPT phases are LU-equivalent to product states (when ignoring symmetries), they
belong to the equivalence class E of “trivial” phases; in particular, they are ← invertible
topological orders (of a special kind, namely without any long-range entanglement).

15 | Important: Possible SPTs (and SETs) depend on the protecting symmetry GP :

¡! Note that SPTs (and SETs) are not properties of ground states (like intrinsic topological order)
but rather classifications of ground states with respect to a prescribed class of allowed Hamiltonian
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deformations (or a restricted class of constant-depth LU circuits). The relevance of this class
typically derives from physical considerations (recall the motivation above).

Second extension of Landau’s paradigm: Symmetry-protected topological phases

16 | These insights lead us to a second extension of our classification scheme:

¡! In this course we only study phases without SSB.

17 | Question: How to characterize SPT phases?

We cannot label them by patterns of long-range entanglement nor by the symmetries they break!

Answer: Complicated! (also: subject of ongoing research!)

! Make simplifying assumptions: Consider restricted classes of models/Hamiltonians:

• ^ Non-interacting fermions → Part I

The benefit of non-interacting fermions is that such models can be solved exactly. This
provides us with powerful tools to classify them systematically. Note that some of these
models will turn out to be invertible topological orders (we will not find non-invertible TOs
with anyons etc. for this class of Hamiltonians).

• ^ Interacting bosons/spins (in 1D) → Part II

Interacting systems of bosons/spins in 1D are usually not exactly solvable. However, since
there is no topological order in these systems, such models realize true SPT phases with
a powerful description in terms of matrix-product states (which again makes a systematic
classification possible).
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Let me comment on a few questions that might come up at this point:

• Why not interacting fermions?

In 1D, this classification derives (via Jordan-Wigner transformation) from the classification
of interacting spin systems (also in 1D) [29]. In higher dimensions, there are approaches to
classify interacting fermions (this is ongoing research [45]), but this goes beyond the scope
of this course.

• Why not non-interacting bosons?

Because non-interacting bosons form a Bose-Einstein condensate (which is a well-understood
non-topological quantum phase). Thus topological phases for bosons require interactions (in
contrast to fermions).

• Why not interacting bosons in higher dimensions?

This can be done with a generalization of the mathematical methods that we will discuss for
the 1D case (Part II) [46, 47]. We will not discuss these generalizations in this course.
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0.6. Overview and Outlook

We can combine all these concepts into a flowchart:

Highlight the three classes that we will discuss in this course.

(A few important original references are given that establish the various concepts.)

Quantum Phases

No broken symmetries
(Disordered phases)

Fermi liquids, Spin liquids, …

Broken symmetries [48–50]
Landau SSB, Group theory

Quantum ferromagnet, Superfluid, …

“old” condensed matter theory (… 1970s)

“new” condensed matter theory (1970s …)

Long-range entangled
(Intrinsic) Topological order (TO)

Short-range entangled

Non-invertible TO [30,51,52]
TQFT, Tensor category theory,
FQHE, Toric code, String-nets, …

Invertible TO [44,53]
Invertible TQFT

IQHE, Majorana chain, …

Symmetry constraints
Symmetry-enriched

topological order (SET)
…

Trivial
phase

Symmetry constraints
Symmetry-protected

topological phases (SPT)

Fermions Bosons / Spins

Interacting [6,47]
Group cohomology
Haldane chain, AKLT,
Bosonic TI & TS, …

Interacting [54,55]
“Group supercohomology?”,

Cobordism theory?

TI & TS + Interactions, …

Non-Interacting [56,57]
Topological band theory,
NL�M& K-Theory

Topological insulators (TI)
& superconductors (TS)

Part III

Part I

Part II
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⁂ Definition: Nomenclature

In this course, gapped quantum phases that…

(1) do not break any symmetries

(2) and are either…

(2a) topologically ordered (TO) or
(invertible and non-invertible, with and without additional protecting symmetries)

(2b) symmetry-protected (SPT)

…will jointly be referred to as topological phases (TP).

Note the difference between“topologically ordered phases” (which are long-range entangled) and“topo-
logical phases” (which can also refer to short-range entangled SPT phases)!

So far, we discussed topological phases on an abstract level. To further motivate these concepts, let us
briefly list a few features of these intriguing phases of matter. Note that not every topological phase exhibits
all these features! Some of them necessarily require long-range entanglement, some don’t. Conversely,
long-range entanglement does not necessarily imply all these features. It is quite a mess and we will study
various models in this course to shed light on these features and their origins.

Some features of topological phases

• TPs cannot be characterized by local order parameters
(all correlations of local operators decay exponentially, cf. our discussion of the TIM).

This is the defining property of topological phases and applies to intrinsic topological order and
SPT phases alike.

• For some TPs, the ground state degeneracy on closed manifolds depends on their topol-
ogy (whether it is a sphere, a torus, etc.) and is robust in the presence of perturbations [58].

This is true for non-invertible topological orders (like fractional quantum Hall states), but not for
SPT phases and invertible topological orders (topological insulators, integer quantum Hall states).

• Some TPs feature exponentially localized excitations (quasiparticles) that obey neither
fermionic nor bosonic statistics – they are anyons and obey fractional or anyonic statistics [59,
60].

The presence of anyons is closely related to the topological degeneracy mentioned above. For
example, integer quantum Hall states and topological insulators do not have anyonic quasiparticles,
but fractional quantum Hall states do.

• These quasiparticles can carry fractionalized charges (e.g. a fraction of the electron
charge) [15].

Fractional charges are a consequence of additional symmetries (for example, particle number
conservation). Fractional charges are therefore a consequence of anyonic excitations in the presence
of a conserved symmetry, i.e., SETorder. Fractional quantumHall stateswithU.1/ particle number
conservation are an example.

• Some TPs have an effective low-energy description in terms of a topological quantum field
theory (TQFT) [61] (a quantum field theory defined by an action that is a topological invariant).
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This is closely related to features of intrinsic topological orders (topological degeneracy, anyonic
excitations). Invertible topological orders are described by ↑ invertible TQFTs.

• In some TPs, (lattice) defects can exhibit anyonic statistics as well (under continuous
deformations of the Hamiltonian).

This can happen even for invertible topological phases like the Majorana chain in 1D and the
px C ipy superconductor in 2D. Note that such defects are not intrinsic quasiparticle excitations
but deformations of the Hamiltonian.

• Some TPs feature robust, gapless edge states on manifolds with boundaries that allow for
scattering-free transport [62].

This can happen for invertible topological phases and even SPT phases. Examples are the famous
chiral edge states of integer quantum Hall systems.

• The linear response of TPs can be quantized to a remarkable degree (even in the presence
of disorder!).

This can happen for invertible and non-invertible topological orders (like integer and fractional
quantum Hall states) and even SPT phases (like topological insulators). The quantization requires
some additional symmetry (like particle number conservation), even if the phase itself does not
require any symmetry protection.
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† Note: Why topology?

After this introductory info-dump you might wonder:

Why are topological phases called“topological”?

Where does topology enter the picture?

The answer to these questions is, as usual, complicated and cannot be fully appreciated at this point
(answering these questions is the purpose of this course). However, we can make a few high-level
comments to set your expectations:

First, remember that ↓ topology is the field of mathematics that is concerned with the formalization
of deformation-invariant properties of spaces. Topology is therefore considered with rather“robust”
qualities of (potentially abstract) objects – in contrast to geometry that is concerned with concepts like
distances and angles (for which one requires a metric). For instance, a donut (bagel) is topologically
equivalent to a coffee mug because you can continuously deform these two shapes into each other
(such a deformations is called a ↓ homotopy):

→ Example of a homotopy (Source: Wikipedia)

We say that the donut and the coffee mug are topologically equivalent but geometrically distinct. For-
malizing the concept of “topological equivalence” and studying its implications is the core subject
of topology.

Generally speaking, topological phase are called“topological” because various (!) concepts from
topology play a role in their description. It is important to appreciate that the term“topology” can
refer to different topological concepts and their application in physics. Broadly speaking, there are
two very distinct such applications in the realm of topological quantum many-body physics:

• “Classical topology”:

Our first encounter of topological concepts will concern so called → topological invariants
that can be used to characterize certain manifolds (parametric paths, Brillouin zones, band
structures,…) that describe non-interacting quantum systems (Part I). This is an application
of topology to single-particle quantum mechanics (with many-body ramifications like the
quantized Hall conductivity). As such, some (not all!) of these phenomena translate to
classical systems (→ topological edge modes) with several applications in engineering (??). The
SPT phases of non-interacting fermions (topological insulators and superconductors) are an
example of “classical topology” at play.

• “Quantum topology”:

A completely different application of methods from topology concerns the description of long-
range entangled quantum many-body phases, i.e., intrinsic topological order. The low-energy
physics of quantum phases in general can be described by ↑ quantum field theories (QFT). It
turns out that the quantum field theories of systems with topological order are of a particularly
elegant type: they are so called ↑ topological quantum field theories (TQFT). These are QFTs
that do not depend on the metric of the space on which the fields live; hence their degrees
of freedom only depend on the topology of this space. The algebraic properties of TQFTs
capture all the fascinating properties of topologically ordered systems (anyonic excitations,
topological ground state degeneracies,…). This application of topology is a genuine feature
of quantum systems and has no classical counterpart, hence“quantum topology”.
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↓ Lecture 4 [24.04.25]

1. The Integer QuantumHall Effect

◊ Topics

• Review the classical & (integer) quantum Hall effect

• Derive Landau levels

• Motivate & define the Berry connection & holonomy

• Motivate & define the Berry curvature & phase

• Motivate & define the Chern number as a topological invariant

• Derive the Kubo formula and the TKNN formula for the Hall conductivity

• Comment on the role of disorder and edge states

• Locate the integer quantum Hall states in our classification of topological phases

• We start our discussion with topological phases that can be realized by non-interacting fermions.
Such systems can be solved exactly in terms of single-particle Hamiltonians, the spectrum of
which defines a ↓ band structure. The many-body ground states are then given by a ↓ Fermi sea
of “filled bands” (in first-quantized language, the ground state is given by a ↓ Slater determinant
of single-particle eigenstates). The resulting quantum phases will be symmetry-protected (SPT)
phases and invertible topological orders. We will not encounter non-invertible topological orders
(with anyons etc.) within this family of quantum many-body systems.

• Historically, the study of topological phases was kick-started by the experimental observation of
the integer quantum Hall effect byKlaus von Klitzing in 1980 [13] who was awarded the
1985 Nobel Prize in Physics for his seminal discovery. The theoretical explanation of the effect
by Thouless et al. in 1982 [17] highlighted the pivotal role that topological concepts can play
in quantum many-body physics. For these theoretical contributions (among others) David J.
Thouless (jointly with F. Duncan M. Haldane and J. Michael Kosterlitz) was
awarded the 2016 Nobel Prize in Physics. We will use the integer quantum Hall effect and its
theoretical description as motivation and starting point for the exploration of topological phases of
non-interacting fermions in general.

• In the following, we have a quite detailed look at some aspects of the integer quantum Hall effect,
especially the mathematics that underlies the quantization of the Hall conductivity. However, the
integer quantumHall effect is not the main focus of this course, and we will not cover the subject to
its full extend (to do so would merit its own dedicated course!). If you are interested in more details,
have a look at the textbook Field Theories of Condensed Matter Systems by Fradkin [63] (Chapter
12 and 13) or the Lectures on the Quantum Hall Effect by David Tong [64] on which parts of this
chapter are based. You may also have a look at the collection [65] by Prange et al..
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1.1. From the classical to the quantumHall effect

1 | ^ 2D electron gas (2DEG) in perpendicular magnetic field B D Be´:

Our sample is wired such that a current Ix can flow from a connection on the left boundary to
a connection on the right boundary (there is no source/drain on the boundaries in y-direction,
Iy D 0). There are voltage probes on all four boundaries to measure the voltages Ux and Uy .

2 | Drude model: (= Electrons as billard balls)

m
d
dt

v D �eE � e v � B„ ƒ‚ …
Lorentz force

�
m

�
v„ƒ‚…

Scattering

(1.1)

� : scattering time (due to electrons bouncing of much heavier crystal ions)

3 | ^ Equilibrium d
dt

v D 0

Define the current density J D �nev (n: electron density)
ı
�!

Note that Ix D LyJx and Uy D LyEy .

J D �E„ ƒ‚ …
Ohm’s law

with � D

�
�xx �xy

�yx �yy

�
$

�0

1C !2
B�

2

�
1 �!B�

!B� 1

�
„ ƒ‚ …

Conductivity tensor

(1.2)

Note that �xx D �yy and �xy D ��yx is a consequence of the rotation symmetry of the system
about the perpendicular ´-axis.

with

!B D
eB

m
⁂ cyclotron frequency (1.3)

and �0 D ne2�=m the ⁂ DC conductivity (conductivity w/o magnetic field).

4 |
ı
�! ⁂ Resistivity tensor:

� �

�
�xx �xy

�yx �yy

�
WD ��1

D
1

�0

�
1 !B�

�!B� 1

�
with E D �J (1.4)

Note that Hall resistance and Hall resistivity are (up to a sign depending on convention) the same:

Rxy WD
Uy

Ix

D ��LyEy

��LyJx

D
Ey

Jx

D ��xy (1.5)

(Here we used Jy D 0 due to our experimental setup.)
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This is not true for longitudinal resistance and resistivity:

Rxx WD
Ux

Ix

D
LxEx

LyJx

D
Lx

Ly

�xx (1.6)

This already suggests that the Hall resistance is in some sense more robust than the longitudinal
(ohmic) resistance as the former is independent of the sample geometry whereas the latter is not.

! In particular:

�xy D
!B�

�0
D
B

ne
Independent of � (= no dissipation) ! (1.7a)

�xx D
m

ne2�
(1.7b)

This implies that the Hall resistivity [and via Eq. (1.5) the Hall resistance] does not depend on the
microscopic interactions of electrons with crystal ions and lattice defects (which determines the
scattering time �).

5 | ! Classical prediction:

6 | Observation:

3 Valid for high temperatures & weak magnetic fields („!B � kBT ).

7 Not valid for low temperatures & strong magnetic fields („!B � kBT ):

– Note how the plot resembles the classical predictions in the lower-left corner (i.e., for
weak magnetic fields).
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– These results are from the electrical quantum metrology division of the PTB (the
national metrology institute of Germany) and taken from this website; here RH D

Rxy D Ly=Ly � �xy D �xy and Rxx D Lx=Ly � �xx and i D � (see below). This
phenomenon was first observed byKlaus von Klitzing in [13] for which he was
awarded the 1985 Nobel Prize in Physics.

– The oscillations of the longitudinal resistance Rxx are called ↑ Shubnikov-de Haas
oscillations. Here we are interested in the → Hall plateaus of the transversal resistance
Rxy (→ below).

7 | ! Quantized plateaus for Hall resistivity:

�xy D

h=e2‚…„ƒ
2�„

e2„ƒ‚…
RK

1

�
with � 2 f1; 2; 3; : : : g (1.8)

RK : ⁂ von Klitzing constant or quantum of resistivity (RK � 25:8 k�)

At this point, Eq. (1.8) is an observational fact and a theoretical miracle!

Note: By the revision of the SI system of units in 2019, the numerical values of h and e are now fixed.
Consequently, the value of the von Klitzing constantRK is also fixed by definition and does not
have to be measured. The integer quantumHall effect can then be used as a universal (and defining)
resistance measurement device (that’s why the BTP is measuring the Hall resistance, see above).
In particular, the quantization of the first → Landau level is perfect by definition: � D 1:000 : : : .
(Using your ohmmeter to measure this quantization would be as if using your balance to measure
the weight of the primary kilogram in Paris before the revision of the SI.With one big difference: the
primary kilogram was a unique artifact. By contrast, the integer quantum Hall effect is a universal
phenomenon that can be reproduced everywhere with the right equipment. Thus“bootstrapping”
universal units for measurements is much easier when artifacts are not involved. This was the
motivation behind the 2019 revision of the SI system in the first place.)

8 | Historically, the miracle of the quantized Hall response and its “topological explanation” [17]
(→ below) kick-started the study of topological phases in the first place:

¡! Important

The exact quantization of the (macroscopic) Hall resistivity in disordered samples of a 2DEG is
a remarkable and unexpected feature that demands for an explanation!

With“exact quantization” one refers to the extraordinary precision to which the experimentally
measured Hall resistivity of different samples coincides: the relative variations are of order 10�10!
A miracle indeed.
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1.2. Landau levels

Up to now we used classical physics to describe the Hall effect – and we failed to explain the quantization
of the Hall resistance. It is time for quantum mechanics to flex it’s muscles…

¡! Important

The integer quantum Hall effect can be understood in the context of non-interacting fermions.
Therefore we focus on single-particle wavefunctions in the following.

This is not true for the ↑ fractional quantum Hall effect!

1 | ^ Same setup as before, but now we qantize the system!

! Single-particle Hamiltonian of an electron in a magnetic field:

H D
1

2m
.p C eA„ ƒ‚ …

�

/2 (1.9)

�: kinetic momentum (gauge independent)
p: canonical momentum (gauge dependent)
A.x/: gauge potential with r � A D Be´ (we do not yet fix a gauge!)

2 | Canonical quantization: �
xi ; pj

�
D i„ıij (1.10)

! Œ�x; �y � $ �ie„B

Remember that the (static) gauge potential A.x/ depends on the position (operator) x, and that
the canonical momentum (operator) that satisfies Eq. (1.10) is pi D �i„ @

@xi
(↑ Stone-von Neumann

theorem).

! The magnetic field couples the movement in x- and y-direction, so that the kinetic momenta
form a pair of conjugate observables.

3 | This immediately suggests the introduction of ↓ ladder operators:

a WD
1

p
2e„B

.�x � i�y/ and a�
D

1
p
2e„B

.�x C i�y/ (1.11)

ı
�! These satisfy as usual Œa; a�� D 1 and we find with Eq. (1.9)

ı
�!

H $ „!B

�
a�aC

1

2

�
(1.12)

! Discrete spectrum En D „!B

�
nC

1
2

�
with n D 0; 1; 2; : : :

! ⁂ Landau levels (LL)

The term“Landau levels” refers to both the quantized eigenenergies En and the corresponding
(degenerate) eigenspaces within the single-particle Hilbert space.
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4 | Eigenstates? Degeneracy?

Note that we only used one degree of freedom (= one harmonic oscillator) although we started with
two independent degrees of freedom (an electron moving in a 2D plane). The Landau levels must
therefore be extensively degenerate to harbor all the needed states! So see this, we must first fix a
gauge…

We stress that here the gauge field A is not a dynamical degree of freedom (like when you quantize
the electromagnetic field). Thus gauge fixing is really just a classical inconvenience and does not
lead to fundamental problems like negative norm states etc.

1.2.1. Landau gauge

Here we proceed with the particularly simple Landau gauge (which comes with a price: it breaks the
rotational symmetry of the problem); the alternative symmetric gauge is discussed in Section 1.2.2 → below.
Since these are gauges, their choice does not affect physical conclusions; however, they lead to different
basis states in the Landau levels that paint different (but equivalent) pictures of the physics within them.

5 | ^ Gauge choice A WD xBey

This gauge breaks translation symmetry in x-direction and rotation symmetry in the plane. This is
of course a mathematical artifact: the physics remains completely invariant under these transfor-
mations.

Eq. (1.9) ! Hamiltonian:

H D
1

2m

�
p2

x C .py C eBx/2
�

(1.13)

6 | ^ Translation symmetry in y-direction

Here we assume either periodic boundaries in y-direction or take the limit Ly ! 1.

! Ansatz: ‰k.x; y/ D eikyfk.x/

In Eq. (1.13) ! Shifted harmonic oscillator:

Hk $
1

2m
p2

x C
m!2

B

2
.x C kl2B/

2 (1.14)

with

lB D

r
„

eB
⁂ magnetic length (1.15)

The magnetic length is the relevant length scale for electrons in a magnetic field (it is the length
scale of their cyclotron orbits).

7 |
ı
�! Eigenfunctions: (ofHk for each y-momentum k)

‰n;k.x; y/ D N eiky„ƒ‚…
Plane wave

in y-direction

Hn

�
xl�1

B C klB
�„ ƒ‚ …

Hermite polynomials

e� 1
2

�
xl�1

B CklB
�2

„ ƒ‚ …
Harmonic oscillator wavefunctions in x-direction

(1.16)
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with n D 0; 1; 2; : : : the Landau level index and k D
2�
Ly

Z the y-momentum.

Note that the eigenspaces ofH (and the eigenfunctions) are physical and therefore gauge indepen-
dent. What is unphysical is the choice of a basis (and the labeling of the basis wavefunctions by
“good” quantum numbers). Since the Landau gauge preserves translation symmetry in y-direction,
the basis above can be labeled by momenta in y-direction. In other gauges (see below), this is not
the case. However, the eigenspaces that are spanned by these wavefunctions are the same for all
gauges (of course) and you can linearly combine basis functions of one gauge with basis functions
of another.

8 | Spectrum: En D „!B

�
nC

1
2

�
(degenerate in the k quantum number!)

TheLandau levels are prototypes for perfectly flat bands. If a LL is only partially filled, themany-body
properties of the electrons that occupy this level are determined by their (Coulomb) interactions.
This is crucial to understand the long-range entanglement (topological order) of ↑ fractional
quantum Hall states.

9 | Degeneracy: 0 � x � Lx ! Restricted y-momenta k: �Lx=l
2
B � k � 0

(Since the wavefunctions (1.16) are exponentially localized around xk D �kl2B .)

! Number of states in each Landau level:

N D
Lx=l

2
B � 0

2�=Ly
D
LxLy

2�l2B
D
AB

ˆ0
D

ˆ

ˆ0
(1.17)

ˆ0 D 2�„=e: ⁂ quantum of flux (cf.RK D 2�„=e2 the quantum of resistivity)

A D LxLy : area of the sample

! Extensive degeneracy of each Landau level (as expected)

In particular, the number of electronsN than can be crammed into each Landau level increases
with the magnetic flux through the sample (one electron per quantum of flux). This implies that if
we fix the electron density and increase the magnetic flux density, fewer and fewer Landau levels
will be needed to distribute all electrons, until for very large B all electrons fit into the lowest
Landau level (LLL). Conversely, at “every day” weak-field conditions, Landau levels up to very
large indices n are occupied by fermions.

1.2.2. ‡ Symmetric gauge

You will do these calculations on → Problemset 2.

In contrast to the ← Landau gauge, the symmetric gauge breaks translation invariance in both directions but
retains the two-dimensional rotation invariance of the system. Thus, instead of k, we should expect a
basis labeled by angular momentum quantum numbers m:
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10 | ^ Gauge choice

A WD �
1

2
r � B D �

yB

2
ex C

xB

2
ey (1.18)

11 | Hamiltonian: [recall Eq. (1.12)]

H D
�2

2m
D „!B

�
a�aC

1

2

�
(1.19)

with a; a� defined via �x and �y [recall Eq. (1.11)]

So far, this procedure does not depend on the gauge choice since the kinetic momentum is a gauge
independent quantity.

12 | Define additional “momentum”: (which does not show up in the Hamiltonian!)

Q� WD p � eA )
�

Q�x; Q�y

�
$ ie„B (1.20)

(Recall that � D p C eA.)

Important: In symmetric gauge (1.18) the two momenta are independent: Œ�i ; Q�j � $ 0

This is not so in other gauges!

13 | ! Define additional ladder operators:

b WD
1

p
2e„B

. Q�x C i Q�y/ and b�
D

1
p
2e„B

. Q�x � i Q�y/ (1.21)

! Œb; b�� D 1 and Œa; b� D 0 (The latter is only true in symmetric gauge!)

14 | ! Eigenstates:

jn;mi WD
a�nb�m

p
nŠmŠ

j0; 0i with aj0; 0i D bj0; 0i D 0 (1.22)

n D 0; 1; 2; : : : : Landau level index
m D 0; 1; 2; : : : : Angular momentum index (→ below)
In symmetric gauge,m replaces the y-momentum k and generates the degeneracy of the LLs.

15 | ^ Complex coordinates:

The unconventional sign makes the functions below holomorphic instead of antiholomorphic.

´ WD x � iy and Ń WD x C iy (1.23)

and the corresponding ↓ Wirtinger derivatives

@ WD
1

2
.@x C i@y/ and N@ WD

1

2
.@x � i@y/ (1.24)

Then @´ D N@ Ń D 1 and @ Ń D N@´ D 0. A function of complex variables is then holomorphic (=
satisfies the Cauchy-Riemann equations) if and only if N@f D 0, i.e., f D f .´/.

16 | Use pi D �i„@i & Eqs. (1.18), (1.20), (1.21), (1.23) and (1.24) !

a D �i
p
2

�
lB N@C

´

4lB

�
and a�

D �i
p
2

�
lB@ �

Ń

4lB

�
(1.25a)

b D �i
p
2

�
lB@C

Ń

4lB

�
and b�

D �i
p
2

�
lB N@ �

´

4lB

�
(1.25b)
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17 | ^ Lowest Landau level wave functions ‰0.´; Ń/:

a‰0 D 0 , N@‰0 D �
´

4l2B
‰0 , ‰0.´; Ń/ D f .´/e�´ Ń=4l2

B (1.26)

f .´/: arbitrary holomorphic function

18 | ^ Unique state with m D 0: (within the lowest Landau level)

b‰0 D 0 , @‰0 D �
Ń

4l2B
‰0

(1.26)
(HH) @f .´/ D 0 , f .´/ D const (1.27)

! ‰0;0.´; Ń/ / e�j´j2=4l2
B (Gaussian state)

19 | ^ Other states in the LLL ! Apply b� to ‰0;0: (Remember that N@´ D 0.)

‰0;m / b�m‰0;0 /

�
lB N@ �

´

4lB

�m

e�´ Ń=4l2
B /

�
´

lB

�m

e�j´j2=4l2
B (1.28)

! Holomorphic monomials � Gaussian

Since all wave functions‰0;m are degenerate, one can form arbitrary linear combinations of these
holomorphic monomials (times a Gaussian) to form more general holomorphic polynomials.

20 | ! In the LLL, m is an angular momentum quantum number:

J‰0;m D „m‰0;m with J D i„
�
x@y � y@x

�„ ƒ‚ …
Angular momentum operator

D „
�
´@ � Ń N@

�
(1.29)

with m D 0; 1; 2; : : :

Note: In 2D there is only one generator of angular momentum J D J´ and the Lie algebra that
generates the rotation group SO.2/ ' U.1/ (namely u.1/ ' R) is abelian. Consequently, there is
no algebraic reason for spin to be quantized (as in 3D where spin can take only half-integer values)
and all irreducible representations are one-dimensional. Thus there is only one spin quantum
number needed (to label the irrep) but none to label distinct basis states of an irrep, i.e., J D m. So
Eq. (1.29) is all there is to say about spin in this context. Note that the abelian“angular momentum
algebra” in 2D has also consequences for particles with anyonic statistics which do not only feature
“fractional charges” and“fractional statistic” but also “fractional spin” (→ Part III).

1.3. Berry connection and Berry holonomy

We now take a step back and discuss some rather abstract (and high-level) concepts of quantummechanics.
We return to the integer quantum Hall effect → later.

The following concepts are very generic and play a role in many areas of modern physics; they are also
important throughout this course. Their application to the quantized Hall conductivity → below is only
one of many examples.

The following derivation is quite common and leads to physically important (and valid) conclusions.
However, it is mathematically not rigorous and uses hidden assumptions on the ↑ connection of the full
↑Hilbert bundle onwhich the parametric family of Hamiltonians is defined, see Ref. [66] for amathematical
treatment of the problem geared towards physicists.
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1 | ^ Setting:

• Continuous family of gapped Hamiltonians H.�/ with k parameters � D

.�1; �2; : : : ; �k/ and n-fold degenerate ground state space V.�/ � V.H.�//

SinceH.�/ is continuous and gapped, the dimension of V.�/ is constant.
We setH.�/j‰i D 0 for j‰i 2 V.�/ and all � , i.e., the ground state energy is zero.

• Slow “parameter path” �.t/ for 0 � t � T

“Slow” compared to the (inverse) of the smallest energy gap along the path �.t/.

• Initial ground state j‰0i 2 V.�0/

2 | Question: What happens with j‰0i asH.�.0// evolves toH.�.T //?

3 | To answer this question, we use the following well-known fact:

¡! Important: Adiabatic theorem

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it
slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s
spectrum.

This fundamental insight is due toMax Born andVladimir Fock [67].

4 | Solution:

Here is a sketch of the scenario/task that we want to solve:

We proceed step by step:

i | Pick a basis fjvi .�/igiD1;:::;n of V.�/ for every �

This choice is not unique and leads to a U.n/ gauge degree of freedom (→ below). Here we
assume that the choice is differentiable (and therefore continuous) along the path � . This
makes it less arbitrary but leaves a lot arbitrariness to choose from. Note that a choice that
is globally continuous is often impossible. Then one follows the arguments below on local
patches in parameter space on which such a choice is possible.

ii | ^ Time-dependent Schrödinger equation:

i„@t j‰.t/i„ ƒ‚ …
(L)

D H.�.t//j‰.t/i„ ƒ‚ …
(R)

(1.30)
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↓ Lecture 5 [25.04.25]

iii | ^ Adiabatic theorem

! Initial state remains in the ground state manifold: j‰.t/i 2 V.�.t// !

(L) j‰.t/i D
Pn

iD1‰i .t/jvi .�.t//i !

@t j‰.t/i D .@t‰i .t// jvi .�.t//i C‰i .t/ Œ@�l
jvi .�.t//i� .@t�l.t// (1.31)

We omit sum symbols; sums over repeated indices are implied (Einstein notation).

(R) H.�.t//j‰.t/i D 0 (Remember that we set the ground state energy to zero.)

This assumption is not crucial for the derivation that follows; it simply removes any
dynamical phase from the evolution, so that only a geometric phase remains (which
is what we are interested in). If you do not set the ground state energy to zero, use
H.�.t//j‰.t/i D E0.�.t//j‰.t/i instead and track the additional term. Its effect is
to add an additional, energy-dependent dynamical phase to the evolution of the wave
function (which is not a new & interesting insight…).

iv | Apply hvj .�.t//j and use Eq. (1.30):

@t‰j .t/ D �‰i .t/ hvj .�.t//j@�l
jvi .�.t//i .@t�l.t// (1.32)

v | This suggests the definition of the

⁂ Berry connection ŒAl.�/�j i WD �ihvj .�/j@�l
jvi .�/i 2 u.n/ (1.33)

Think of the Al as � -dependent Hermitian n� n-matrices, one for each of the l D 1; : : : ; k

parameters.

vi | With this definition, we can write [‰ � .‰j /j D1;:::;n]

@t‰.t/ D �i .@t�l.t//Al.�.t//„ ƒ‚ …
Time-dependent matrix

‰.t/ (1.34)

vii | This equation can be solved with a ↓ Time- (T ) or path-ordered (P ) exponential:

‰.T / D T exp

"
�i

Z T

0

Al.�.t// @t�l.t/ dt

#
‰0 (1.35a)

D P exp
�
�i

Z
�

Ad�

�
„ ƒ‚ …

�U� (Unitary matrix)

‰0 (1.35b)

Here, A D .Al / should be seen as a u.n/-valued vector field on the parameter space
(a 1-form). I.e., A can be integrated along parameter paths which, after (path ordered)
exponentiation, produces a unitary U.n/ that describes the geometric part of the adiabatic
evolution on the ground state space.
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5 | ^ Change of local basis by unitary �.�/ 2 U.n/: jv0
i .�/i WD �ij .�/jvj .�/i

Note that the choice of basis is a gauge choice: it cannot have physical significance!

ı
�! A0

l D �Al�
�

� i
@�

@�l

�� (1.36)

If you attended a course on quantum field theory, you might recognize this as the gauge transfor-
mation of a non-abelian U.n/=SU.n/ Yang-Mills gauge theory (like QCD). The difference is that
here the gauge (Berry) connection Al does not live on Minkowski spacetime but on an abstract
“parameter space.” Gauge transformations arise from“parameter-local” basis transformations in
the degenerate ground state space of a Hamiltonian (family).

ı
�! U 0

� D �.�.T // U� �
�.�.0// (1.37)

To show this, consider an infinitesimal piece d� of the path � and linearize U� along this piece
to derive the above transformation. Then use that the path-ordered exponential is defined as the
product of such infinitesimal pieces. The identity� @��

@�l
D �

@�
@�l
�� might help (prove this!).

6 | ^ Open path � ! U� is gauge dependent ! Cannot contain physical information!

To see this let �.�.0// D 1. Then U 0
� D �.�.T // U� can be chosen (almost) arbitrary since

U.n/ is a group and�.�.T // can be chosen (almost) arbitrary (just connect it smoothly to the
identity, i.e., its determinant must be one). This means thatU� cannot contain physical information
as it can be transformed into any other unitary U 0

� (with the same determinant) by parameter-local
basis transformations.

! ^ Closed loops � in parameter space

I.e.,H.�.0// D H.�.T // andV.�.0// D V.�.T // such thatU� is an automorphism onV.�.0//

and described the geometric transformation of ground states due to cyclic (and adiabatic) deforma-
tions of the Hamiltonian.

7 | Then the

⁂ Berry holonomy U� D P exp
�
�i

I
�

Ad�

�
2 U.n/ (1.38)

is gauge covariant: [This follows from the continuity of�.�/ and �.T / D �.0/.]

U 0
� D �.�.0// U� �

�.�.0// (1.39)

Note that the argument from above breaks down since both unitaries�.�.T // D �.�.0// are
necessarily the same (since the parameter path is closed). U� can still be changed, but not arbitrarily:
It is unique up to unitary basis transformations (for instance, its spectrum is independent of basis
changes!). This quantity can encode physical properties of the system. Note the difference between
gauge invariant (U 0

� D U� ) and gauge covariant [Eq. (1.39)].

8 | There is another important gauge covariant quantity (that we will use → below):

⁂ Berry curvature Flm WD
@Al

@�m
�
@Am

@�l

� i ŒAl ;Am� 2 u.n/ (1.40)
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This is the“field-strength” of the gauge field A, the non-abelian generalization of the field-strength
tensor F�� D @�A� � @�A� in electrodynamics (where A� 2 u.1/ ' R so that the commutator
vanishes identically).

! Flm is gauge covariant:

F 0
ij .�/ $ �.�/Fij .�/�

�.�/ (1.41)

Notes:

• This is the field strength tensor known from ↑ non-abelian Yang-Mills gauge theories. The
Yang-Mills Lagrangian takes the trace of the field strength tensor, thereby converting a gauge
covariant quantity into a gauge invariant quantity: TrŒF��F

�� �. (Note that the summation
over � and � is not related to gauge but Lorentz invariance for YM theories; as we do not
have generic symmetries on the parameter space, we do not have an analog of this symmetry
in the current situation.)

• If Eq. (1.40) seems abstract but you know about ↓ general relativity, there is some insightful
connection (,) to be drawn. Remember that the ↓ Riemann curvature tensor can be expressed
as [68, Section 10.2.3]

Ri
jlm D @l�

i
jm � @m�

i
jl C � i

nl �
n
jm � � i

nm�
n
jl (1.42)

in terms of ↓ Christoffel symbols � i
jm , which are the (coordinate-dependent) connection

coefficients of the (metric-induced) ↓ Levi-Civita connection on the spacetime manifold. Let
us interpret the first two indices of the Christoffel symbols as indices of aD � D matrix
(whereD is the spacetime dimension), Œ�m �ij � � i

jm , and do the same for the Riemann
curvature tensor: ŒR

lm
�ij � Ri

jlm
. In this notation, Eq. (1.42) reads

Rlm D @l�m � @m�l C �l�m � �m�l D @l�m � @m�l � Œ�m;�l � (1.43)

which is (up to prefactors) completely analogous to Eq. (1.40). This explains why the Berry
curvature is called “curvature”: it describes a generalized (and rather abstract) curvature of
the vector bundle defined by the ground state spaces V.�/ on the parameter manifold M.

Note that in general relativity, the vector space at each point of the spacetime manifold is
given by the ↓ tangent space – which has the same dimension as the manifold itself. This is
why it is covenient to treat all four indices of the Riemann tensor on the same footing. In our
context, the parameter manifold is k-dimensional and has nothing to do with the attached
ground state spaces V.�/ that are n-dimensional. Hence we prefer the matrix notation in
Eq. (1.40) where the indices that correspond to the Hilbert space are suppressed.

1.3.1. Berry phase and Chern number

We now want to focus on the important special case w/o degeneracy (n D 1). In this case, we can make
use of the Berry curvature to calculate the Berry holonomy (which is for n D 1 just a phase known as
→ Berry phase):

9 | ^ Special case n D 1: V.�/ D span fjv.�/ig (= systems w/o ground state degeneracy)

In this special case, the quantities introduced above simplify as follows:

Berry connection: Al.�/ D �ihv.�/j@�l
jv.�/i 2 u.1/ ' R (1.44a)

Berry holonomy: U� D exp
�
�i

I
�

Ad�

�
� ei.�/

2 U.1/ (1.44b)

Berry curvature: Flm D
@Al

@�m
�
@Am

@�l

2 u.1/ ' R (1.44c)
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! Ground state can only change by a phase!

10 | Gauge transformation: �.�/ D ei�.�/ !

The gauge transformation of the Berry connection is similar to electrodynamics:

A0
D A C r�� (1.45a)

U 0
� D U� (gauge invariant) (1.45b)

F 0
lm D Flm (gauge invariant) (1.45c)

11 | This motivates the following definition:

⁂ Definition: Berry phase

For n D 1, the exponent of the Berry holonomy is called ⁂ Berry phase:

.�/ D �

I
�

Ad� D i

I
�

hv.�/j@�l
jv.�/i d�l 2 R (1.46)

The nomenclature is sometimes a bit vague: .�/ and ei.�/ are both called“Berry phase.”

• The Berry phase is a ⁂ geometric phase – as compared to the usual ↓ dynamical phases
accumulated by wave functions in quantum mechanics. Remember that an eigenstate with
energy E collects the phase e� i

„
E�t in the time interval �t due to the unitary evolution

governed by the Schrödinger equation. Such phases are called dynamical phases. By contrast,
the Berry phase is not a consequence of the energy of the system (recall that we set the ground
state energy to zero for all parameters!); it is rather a geometric property of the parametric
path � over the ↑ vector bundle V of ground state spaces.

• The Berry phase was first discussed byMichael Berry in 1984 [69].

• The Berry phase follows from the Berry connection. But where does the Berry connection
“come from”? It seems that it is somehow hidden in the Hamiltonian family H.�/, but
this can only be partially true as the latter only defines a projector onto its ground state
manifold. This provides us with the Hilbert sub-bundle V.�/ on which the Berry connection
is defined. But a projection does not magically produce a connection. Actually, we start
from the full Hilbert bundle (its fibers are the Hilbert spaces on which the Hamiltonians act)
und (silently) assume that it is trivialized M � H0 with some reference Hilbert space H0.
A trivialized bundle has a natural connection, namely the trivial (or constant) connection.
Starting from this connection, the ground state projection provided by a Hamiltonian then
induces a connection on the sub-bundle V.�/ – and this is the Berry connection. If there is
no canonical (or physically motivated) trivialization of the full Hilbert bundle, the choice of
the connection on this bundle leads to potentially distinct Berry connections and thereby
distinct Berry phases; for details on this subtlety see Ref. [66].

12 | Examples of systems with non-trivial Berry phase:

• Spin-1
2
in a variable magnetic field (→ Problemset 2 and ↑ Ref. [69])

• Aharonov-Bohm effect (↑ [69])

• Focault pendulum (↑ [70, 71])

The concept of parallel transport with non-trivial holonomies is not restricted to quantum
mechanical systems!
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13 | ^ Effect of gauge transformations on the Berry phase:

 0.�/ D �

I
�

A0d� D �

I
�

.A C r��/d� D .�/ � Œ�.�.T // � �.�.0//� (1.47)

Note that here �.�.T // should be read as lim"!0 �.�.T � "// and �.�.0// is shorthand for
lim"!0 �.�.0C "//, which explains why Eq. (1.48) below makes sense even though �.T / D �.0/.

Continuity of the gauge transformation: �.�.0// D �.�.T // !

Recall that � is a closed path: �.T / D �.0/. Note that continuity of the gauge transformation
ei�.�.0// D �.�.0// D �.�.T // D ei�.�.T // does not imply continuity of �.�/!

Eq. (1.45b) ) �.�.T // � �.�.0// D 2�m for m 2 Z (1.48)

! .�/ is gauge invariant up multiples of 2�

! For .�/ … 2�Z, the Berry phase cannot be gauged away and can have physical consequences!

14 | ^ Special case k=2: � D .�1; �2/

This is the most important case for us because the parameter space we are interested in will be the
2D ↓ Brillouin zone (which is a torus).

! Computation of the Berry phase for k D 2 on a compact manifold M (sphere, torus):

i | ^ Closed path � on sphere M D S2

^ Submanifolds with † [ N† D M and @† D � D @ N†:

¡! Important

In general it is not possible to choose a gauge that is continuous (= non-singular) every-
where on M!

Hence we must be careful when integrating the Berry connection A along paths on M! In
the following, we assume that we can find continuous gauges for every simply connected,
open submanifold of M though:

ii | ^ Continuous gauge A1 on † ! Stokes’ theorem valid on†!I
�

A1d�
Stokes
D

Z
†

Flmd� lm (1.49)

� lm is the differential area element (a 2-form that is antisymmetric in l andm, just as Flm).

For a reformulation in terms of differential forms see the comments → below.
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iii | ^ Continuous gauge A2 on N† ! Stokes’ theorem valid on N†!I
�

A2d�
Stokes
D �

Z
N†

Flmd� lm (1.50)

The sign is due to the opposite orientation of the boundary for N†.

iv | Using Eq. (1.48) ^ Eq. (1.49) ^ Eq. (1.50) !Z
M

Flmd� lm
D

I
�

A1d�„ ƒ‚ …
.�/C2�m1

�

I
�

A2d�„ ƒ‚ …
.�/C2�m2

D 2�m with m 2 Z (1.51)

Here we used that the closed loop integrals of the Berry connection are unique up to integer
multiples of 2� .

15 | This motivates the following definition:

⁂ Definition: Chern number

For a compact, closed two-dimensional parameter space M with Berry curvature F , the
⁂ (first) Chern number is an integer and defined as

C WD
1

2�

Z
M

Flmd� lm
2 Z (1.52)

This is our first example of a topological invariant.

• Wewill meet the Chern number again in Section 1.4 where we compute the Hall conductivity.

• ¡! Following the argument above, it is clear that whenever there exists a gauge that is non-
singular on the complete parameter space, the Chern number is necessarily zero. [Because
you can then choose A1 D A2 such that the difference in Eq. (1.51) vanishes.] Conversely,
whenever the Chern number does not vanish, there must be singularities in all gauges! You
will encounter an example of this in → Problemset 2.

16 | ‡ Comments:

• Differential forms:

The proper way to formulate the application of Stokes’ theorem is in terms of differential
forms. In this framework

A WD

kX
lD1

Ald�l (1.53)

is a 1-form that can be integrated along paths:

.�/ D �

I
�

A : (1.54)

The Berry curvature is then the 2-form given by the exterior derivative of A (this is only true
for n D 1, i.e., abelian gauge fields):

F WD dA D

X
1�l;m�k

.@mAl � @lAm/„ ƒ‚ …
Flm

1

2
d�m ^ d�l„ ƒ‚ …

d� lm

D Flmd� lm (1.55)
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where the last expression is just a shorthand notation. (For non-abelian gauge fields it is
F D dA C A ^ A; note that A is a 1-form with values in a non-abelian Lie algebra so that
the wedge product does not vanish in general.)

Finally, Stoke’s theorem for differential forms states thatI
�D@†

A D

Z
†

dA D

Z
†

F : (1.56)

• Observation of the Berry phase:

^ Spin-polarized particles on beam splitter in magnetic field with constant amplitude:

! Interference pattern: I D j1C ei.�/j2 where ei.�/ D ei�=2 with solid angle 0 � � �

4� . You will calculate the dependency of the Berry phase on the solid angle traced out by
the magnetic field in → Problemset 2. This experiment was already proposed and studied by
Berry in his original work [69].

To the best of my knowledge, there has been no experiment that implemented exactly Berry’s
proposal (due to experimental issues controlling additional dynamical phases). However,
there have been multiple other experimental verifications of the Berry phase in quantum
systems since its prediction in 1984 [72, 73]. (Note that the historically first reporting [74]
was later disputed [75] because it can be explained classically, without invoking quantum
mechanics.)

• Geometric interpretation of the Berry curvature:

In general, the parameter space can be multi-dimensional. For obvious reasons we only draw
two of them:

The Berry holonomy can be compared to the rotation of a vector when carried (“parallel
transported”) around a closed curve on a curved space (like the shown sphere). The analog
to the ↓ Riemann curvature is the Berry curvature, the role of the ↓ Levi-Civita connection
is played by the Berry connection. The Chern number equals the ↑ Euler characteristic
of a compact 2D manifold, and the relation that gives the Chern number in terms of the
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Berry curvature is then known as ↑ Gauss-Bonnet theorem (more precisely: ↑ Chern-Gauss-
Bonnet theorem, a generalization of the classic Gauss-Bonnet theorem to even-dimensional
Riemannian manifolds). This “real space analog” may be known from your lectures on
↓ general relativity. Note that in general relativity one is interested in the ↑ tangent bundle
where a tangential space is attached to every point of the (spacetime) manifold. Here we
are not interested in the tangent bundle of the parameter manifold but more general ↑ fiber
bundles where the local fibers are given by ground state spaces V.�/ or Lie groups U.n/ that
act on them.

1.4. Quantization of the Hall conductivity

With these new mathematical insights, we now return to the integer quantum Hall effect and its Hall
plateaus. Our goal is to find a relation between the Hall conductivity and the Chern number. This
remarkable relation between a physical quantity and a topological invariant is one of the most important
insights in contemporary condensed matter physics and explains the quantization of the Hall conductivity.

The following discussion is based on David Tong’s lecture notes on the quantum Hall effect [64]. For a
more detailed (and much more technical) discussion, see Chapter 3 of Bernevig’s textbook [1]; another
account can be found in Chapter 12 of Fradkin’s textbook [63]. You might also want to have a look at the
original manuscript by Thouless et al. [17] and the follow-up [76].

1.4.1. The Kubo formula

As a preparation, we compute the linear response of a quantum mechanical system at T D 0 for a
time-dependent, external perturbation. Here we focus on the special case where the perturbation is a
time-dependent electric field and the response is a current of charged particles. The approach is generic
and valid for general (in particular: interacting) Hamiltonians. The resulting → Kubo formula has many
applications beyond computing the quantized Hall conductivity.

1 | ^ Unperturbed HamiltonianH0 with Eigenstates jmi and Eigenenergies Em

^ Time-dependent perturbation �H.t/

! H.t/ D H0 C�H.t/ (Schrödinger picture!)

2 | It is convenient to absorb the unperturbed time evolution into operators:

! ↓ Interaction picture:

�HI .t/ WD U
�
0 .t/�H.t/U0.t/ and j‰.t/iI WD U.t; t0/j‰.t0/iI (1.57)

with unperturbed time evolution operator U0.t/ WD e� i
„

H0t and

U.t; t0/ WD T exp
�
�
i

„

Z t

t0

�HI .t
0/dt 0

�
(1.58)

Here T denotes the time-ordered exponential. It is easy to check that the states j‰.t/iI satisfy the
Schrödinger equation in the interaction picture:

i„
d
dt

j‰.t/iI D �HI .t/j‰.t/iI : (1.59)
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To show the unitary equivalence between the interaction picture and the conventional Schrödinger
picture, you must show that U.t; t0/ $ U

�
0 .t � t0/US .t; t0/ with the full Schrödinger evolution

US .t; t0/ WD T exp
�
�
i

„

Z t

t0

H.t 0/dt 0
�
: (1.60)

3 | Prepare system for t0 ! �1 in ground state j0i of H0 (or some other eigenstate)

4 | ^ Expectation value of arbitrary (interaction picture) operator OI .t/ D U
�
0 OU0:

hO.t/i D h0jU
�
S .t;�1/OUS .t;�1/j0i„ ƒ‚ …

Schrödinger picture

(1.61a)

D h0jU �.t;�1/OI .t/U.t;�1/j0i„ ƒ‚ …
Interaction picture

(1.61b)

1.58
� h0j

�
OI .t/C

i

„

Z t

�1

�
�HI .t

0/;OI .t/
�
dt 0
�

j0i (1.61c)

This linearization is the core of linear response theory.

Note that time ordering is not important in linear order (only one time integral!).

!

⁂ Kubo formula:

ıhO.t/i � hO.t/i � hOi D
i

„

Z t

�1

h0j
�
�HI .t

0/;OI .t/
�

j0i dt 0 (1.62)

• This is the linear response of the system to the perturbation �H.t/. Note that hOi D

h0jOj0i D h0jOI .t/j0i is not a dynamic response but the static expectation value of O in the
initial state (remember that j0i is a eigenstate ofH0). In the following, we will set it to zero.

• The Kubo formula was first presented by Ryogo Kubo in 1957 [77].
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↓ Lecture 6 [02.05.25]

5 | ^ Special case: Coupling to uniform electric field E.t/ D Ee�i!t

i | Choose gauge such that E.t/ D �@tA.t/ (i.e. At D � D const)

Remember that in general E D �r� � @t A and B D r � A.

! A.t/ D Ee�i!t=.i!/

ii | ^ Perturbation Hamiltonian:

�HI .t/ D �J .t/ � A.t/ (1.63)

with (total) current operator J .t/

• At this point we do not want to fix the unperturbed Hamiltonian H0 that describes
the charge carriers without the field. Hence we do not know the form of J .t/ in the
interaction picture. We therefore play it safe and carry a potential time-dependence
along.

• This is a linearized version of the true coupling Hamiltonian that describes the effect of
the electromagnetic field on electrical charges. For instance, a free particle with charge
q (and with � D const D 0) is described by the Hamiltonian

H D
1

2m
.p � qA/2 D

p2

2m„ƒ‚…
�H0

�

�J‚…„ƒ
qp

m
�A„ ƒ‚ …

��H.t/

C����O.A2/ : (1.64)

There is also a quadratic term A2 which does not contribute to the Hall conductance
(so we can safely drop it).

• In therms of the ↓ current density j .r; t / the Hamiltonian reads

�HI .t/ D �

Z
d2r j .r; t / � A.r; t / (1.65)

with the usual current density j D
q

2m

P
i Œpiı.r � ri /C ı.r � ri /pi � for many par-

ticles indexed by i . With a homogeneous electric field, this becomes

�HI .t/ D �J .t/ � A.t/ with total current J .t/ D

Z
d2r j .r; t / : (1.66)

For a homogeneous current, the total current is J D LxLy j D Aj whereA D LxLy

denotes the area of the sample.

iii | ^ Current as observable: O D Ji !

(Remember that we set the static expectation value to zero: h0jJi j0i D 0.)

hJi .t/i
1.62
D �

1

„!

Z t

�1

h0j
�
Jj .t

0/; Ji .t/
�

j0iEj e
�i!t 0

dt 0 (1.67a)

Time-translation invariance ofH0; Substitution t 00 D t � t 0

$
�
�
1

„!

Z 1

0

h0j
�
Jj .0/; Ji .t

00/
�

j0i ei!t 00

dt 00
�

„ ƒ‚ …
DW �ij .!/ A

Ej e
�i!t (1.67b)
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with ⁂ conductivity tensor �ij .!/

The sample area A D LxLy shows up because the conductivity tensor relates, by definition,
the current density ji to the electric field, and not the total current Ji D Aji .

To show the second equality, use that Jj .t
0/ D e

i
„

H0t 0

Jj e
� i

„
H0t 0

[and similar for Ji .t/] and
that j0i is an eigenstate ofH0.

iv | ! Hall conductivity:

�xy.!/ D �
1

„!A

Z 1

0

h0j
�
Jy.0/; Jx.t/

�
j0i ei!tdt (1.68)

This is the AC Hall conductivity as it is still frequency dependent.

v | Set t0 D 0 and use U0.t/ D
P

n e
�iEnt=„jnihnj and Ji .t/ D U

�
0 .t/JiU0.t/:

!

�xy.!/ D �
1

„!A

Z 1

0

X
n

(
h0jJy jnihnjJxj0iei.En�E0/t=„

�h0jJxjnihnjJy j0iei.E0�En/t=„

)
ei!tdt (1.69a)

Integrate (using a regularization ! C i" to make the integral convergent)

D �
i

!A

X
n¤0

�
h0jJy jnihnjJxj0i

„! CEn �E0
�

h0jJxjnihnjJy j0i

„! CE0 �En

�
(1.69b)

vi | Take DC limit ! ! 0 and use 1
„!CEn�E0

D
1

En�E0
�

„!
.En�E0/2 C O.!2/:

(Note the i=! that must be canceled to render the expression finite!)

�xy $
i„

A

X
n¤0

h0jJy jnihnjJxj0i � h0jJxjnihnjJy j0i

.En �E0/2
(1.70)

This is the Hall conductivity expressed in terms of current matrix elements. Our → next
project will be a (quite tedious) reformulation of this expansion with the goal to re-express it
in terms of a topological invariant, namely the ← Chern number.

vii | Comment on the constant term:

For the derivation of Eq. (1.70) it is crucial thatX
n¤0

h0jJy jnihnjJxj0i C h0jJxjnihnjJy j0i

En �E0

D 0 (1.71)

which makes the constant terms of the Taylor expansion cancel (this avoids the divergence
for ! ! 0!).

One way to see this is from rotation invariance of the system in the x-y-plane (a quantum
Hall system should be rotation invariant about the axis of the magnetic field). In particular,
�xy should be invariant under the �=2-rotation Jx 7! Jy and Jy 7! �Jx (note that J is a
vector operator). This means thatX
n¤0

h0jJy jnihnjJxj0i C h0jJxjnihnjJy j0i

En �E0

Š
D �

X
n¤0

h0jJxjnihnjJy j0i C h0jJy jnihnjJxj0i

En �E0

(1.72)
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which implies Eq. (1.71) so that only the antisymmetric part of �xy survives.

Note that this is a quite general argument: If we decompose the 2D conductivity tensor into
symmetric and antisymmetric parts, � D �s C �a, and demand rotational invariance of the
tensor, i.e., � D R�RT for a 2D rotationmatrixR, we have �s D R�sR

T and �a D R�aR
T

separately. The only symmetric matrix invariant under rotations is proportional to the identity,
�s D �xx � 1, so that there cannot be a symmetric contribution to the off-diagonals (that is,
the Hall conductivity �xy). Thus the most general form of a rotation invariant conductivity
tensor is

� D

�
�xx �xy

��xy �xx

�
: (1.73)

1.4.2. The TKNN invariant

Here wewant to connect theHall conductivity [given by theKubo formula Eq. (1.70)] to the Chern number
and thereby explain the quantization of the former. To do so, we consider non-interacting electrons in a
two-dimensional periodic potential, so that the momentum space is a torus.

The rationale of the following discussion is similar to the original approach by Thouless et al. [17].

1 | ^ Single electron in a periodic potential with HamiltonianH0:

System size: Lx � Ly & periodic boundaries

We take the thermodynamic limit Lx ; Ly ! 1 later.

2 | ↓ Bloch theorem:

• Eigenfunctions: ‰nk D eikxunk.x/

with unk.x C R/ D unk.x/ for lattice vectors R and band index n D 1; 2; : : :

• Eigenenergies "n.k/ continuous in k ! “Bands”

• ‰nkCK D ‰nk for reciprocal lattice vectors K

If R D anxex C anyey describes a square lattice with lattice constant a, the reciprocal
lattice is K D m1k1 Cm2k2 with ki D

2�
a

ei .

! Brillouin zone = Torus T 2
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Since our system is finite, momenta are discrete. The size of the Brillouin zone is determined
by the inverse lattice constant and remains fixed in the following.

3 | ^ Many-body Fock states with Fermi energy EF :

¡!While we can understand the integer quantumHall effect within the framework of non-interacting
fermions, the quantization of the Hall conductivity is a genuine quantum many-body phenomenon.
It is crucial that you understand the difference (and relation) between these concepts.

Ground state D j0i 7! j0i D Filled Fermi sea (1.74a)

Excited states D jni 7! jni D Fermi sea with particle-hole excitations (1.74b)

Current operator D Ji 7! Ji D Second-quantized current operator (1.74c)

In the following, bold states live in the fermionic Fock space (= many-body states), whereas states
in normal font live in the single-particle Hilbert space.

4 | Eq. (1.70) ! Hall conductivity of fermionic many-body system:

�xy $
i„

A

X
n¤0

h0jJyjnihnjJxj0i � h0jJxjnihnjJyj0i

.En �E0/2
(1.75)

Note that the sum goes over all possible excited many-body states (which are all states except the
Fermi sea ground state). However, below we will see that only states with a single particle-hole
excitation contribute.

5 | Current operator = Single-particle operator:

Ji D

X
nk;mq

h‰nkjJi j‰mqi c
�
nk
cmq (1.76)

c
�
nk

: Creation operator for fermion in Bloch state j‰nki

Remember that this recipe produces an operator on Fock space that acts like the single-particle
operator Ji within the one-fermion subspace.
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6 | Eq. (1.75) ! [Here nk0 is short for .nk/0 D n0k0.]X
n¤0

h0jJyjnihnjJxj0i

.En �E0/2
D

X
nk0;mq0

X
nk;mq

h‰nkjJy j‰mqih‰nk0 jJxj‰mq0i

X
n¤0

h0jc
�
nk
cmqjnihnjc

�
nk0cmq0 j0i

.En �E0/2„ ƒ‚ …
ınkDmq0 ımqDnk0 ı"m.q/>EF

ı"n.k/<EF

Œ"m.q/�"n.k/�2

(1.77)

$
X

nk;mq
"n.k/<EF <"m.q/

h‰nkjJy j‰mqih‰mq jJxj‰nki

Œ"m.q/ � "n.k/�2
(1.78)

To evaluate the sum
P

n¤0 over all excited many-body states, convince yourself that you can w.l.o.g.
replace the denominator by Œ"m.q/ � "n.k/�

2 (which is independent of n!). Then
P

n¤0 jnihnj

can be written as 1 � j0ih0j and the rest follows.

7 | Assume "n.k/ 7 EF for all k 2 T 2

¡! This means that the Fermi energy falls into a band gap. This is absolutely crucial for what follows.

(Note that statements like “"n < EF ” are now well-defined since "n.k/ < EF is true for all
momenta and only depends on the band index n.)

!

�xy $
i„

A

X
n;m

"n<EF <"m

X
k;q2T 2

(
h‰nkjJy j‰mqih‰mq jJxj‰nki

�h‰nkjJxj‰mqih‰mq jJy j‰nki

)
Œ"m.q/ � "n.k/�2

(1.79)

8 | As a first simplification, we want to get rid of one of the two momentum summations. To do so, we
must show that the current operator cannot change the momentum of a state:

i | Define the single-particle current operator

J WD e
i

„
ŒH0;x� (1.80)

This definition is motivated as follows: Physically, a sensible single particle current operator
must satisfy hJ i D e dhxi

dt
D Charge � Velocity. The ↓ Ehrenfest theorem tells us that

dhxi

dt
D

i
„
hŒH0;x�i which immediately suggests the definition (1.80). You can easily check

that for a free particle,H0 D
p2

2m
, it is J D e p

m
(as it should be).

ii | ^ Translation operator TR with lattice vector R:

TRxT �1
R D x C R (1.81a)

TRH0T
�1
R D H0 (1.81b)

TRj‰nki D eikR
j‰nki (1.81c)

• The first equation follows from the definition of the translation operator.

• The commutativity with the Hamiltonian follows from our assumption that the system
features a discrete translation invariance (“periodic potential”).
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• The energy eigenstates of such a Hamiltonian are Bloch states j‰nki which are also
eigenstates of these lattice translations (this is just the statement of ← Bloch’s theorem).

iii | Consequently

TRJT �1
R D i

e

„
ŒH0;x C R� D i

e

„
ŒH0;x� D J (1.82)

! J cannot change lattice momenta

Formally: h‰nkjJi j‰mqi D h‰nkjJi j‰mkiık;q

iv | Thus Eq. (1.79) !

�xy $
i„

A

X
n;m

"n<EF <"m

X
k2T 2

(
h‰nkjJy j‰mkih‰mkjJxj‰nki

�h‰nkjJxj‰mkih‰mkjJy j‰nki

)
Œ"m.k/ � "n.k/�2

(1.83)

9 | ^ Thermodynamic limit (in real space): Li ! 1

, Continuum limit (in momentum space): �ki �
2�
Li

! 0

! The sum over momenta turns into an integral over the Brillouin zone T 2:

�xy $ i„
X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
h‰nkjJy j‰mkih‰mkjJxj‰nki

�h‰nkjJxj‰mkih‰mkjJy j‰nki

)
Œ"m.k/ � "n.k/�2

(1.84)

• The continuum limit is convenient because we can now use tools from calculus to simplify
this expression further.

• Here we used the usual approximation of a Riemann sum:

1

Li

X
ki

D
1

2�

X
ki

2�

Li

Li !1

�����!

Z
dki

2�
(1.85)

Remember that A D LxLy .

10 | Our next goal is to get rid of the current operators:

i | Use j‰nki D eikxjunki (← Bloch theorem) and define QJ .k/ WD e�ikxJ eikx so that

h‰nkjJi j‰mki D hunkj QJi .k/jumki (1.86)

¡! Note that in eikx, x is the position operator.

ii | Define QH0.k/ WD e�ikxH0e
ikx so that

H0j‰nki D "n.k/j‰nki , QH0.k/junki D "n.k/junki (1.87)

iii | With these preliminaries, we can write:

QJi $
e

„

Q@i
QH0 with Q@i WD

@

@ki
(1.88)

To show this use the definition of QH0.k/ and show that Q@i
QH0 D i Œ QH0; x�.
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iv | Eqs. (1.84), (1.86) and (1.88) !

�xy $ i
e2

„

X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
hunkjQ@y

QH0jumkihumkjQ@x
QH0junki

�hunkjQ@x
QH0jumkihumkjQ@y

QH0junki

)
Œ"m.k/ � "n.k/�2

(1.89)

11 | Use

hunkjQ@y
QH0jumki D hunkjQ@y

�
QH0jumki

�
� hunkj QH0jQ@yumki (1.90a)

D Œ"m.k/ � "n.k/�hunkjQ@yumki (1.90b)

D Œ"n.k/ � "m.k/�hQ@yunkjumki (1.90c)

The first line is just the product rule, in the second line we used that QH0 D QH
�
0 and that

hunkjumki D 0 for n ¤ m (which is the case in our expression for the Hall conductivity). The last
line follows if in the first line the derivative acts on the bra to the left instead on the ket to the right.

!

�xy $ i
e2

„

X
n;m

"n<EF <"m

Z
T 2

d2k

.2�/2

(
hQ@yunkjumkihumkjQ@xunki

�hQ@xunkjumkihumkjQ@yunki

)
(1.91)

Yay! The denominator is gone…,

12 | Use X
m

jumkihumkj D 1 (1.92a)

)

X
mW"m>EF

jumkihumkj D 1 �

X
mW"m<EF

jumkihumkj (1.92b)

These statements are true on the subspace spanned by the Bloch functions junki for fixed k.

More rigorously, one should replace 1 by the projector Pk onto states with lattice momentum k

and do the derivatives in the expression for �xy properly; the result will be the same, though.

!

�xy $ i
e2

„

X
nW"n<EF

Z
T 2

d2k

.2�/2

n
hQ@yunkjQ@xunki � hQ@xunkjQ@yunki

o
(1.93)

Only the term with 1 survives. The second term vanishes as it replaces the sum over empty bands
by a sum over filled bands. But then the sum in the expression for the Hall conductance vanishes
identically if one shifts the derivatives to the states withmk in the first term [using Eq. (1.90)] and
substitutes n $ m in the sums (the last step only works becausem and n now run over the same
range of filled bands).
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↓ Lecture 7 [08.05.25]

13 | Finally, we can relate our findings to the geometrical quantities introduced in Section 1.3:

i | Define the Berry connection of band n:

A
Œn�
i .k/ WD �ihunkjQ@iunki (1.94)

This is a U.1/ connection on the Brillouin zone which is the compact 2D manifold T 2. The
parameters are the momenta (� D k) and the local Hilbert spaces are one dimensional:
V Œn�.k/ D span fjunkig; these are the non-degenerate eigenspaces (no band crossings!) of
the Hamiltonian family QH0.k/ with discrete spectrum "n.k/ (fix k as a parameter!). Thus
n D 1 and k D 2 in the context of our general discussion in Section 1.3; in the present
context, n denotes the band index.

ii | ! Berry curvature of band n:

F
Œn�

ij .k/ D Q@j A
Œn�
i � Q@iA

Œn�
j

D �ihQ@junkjQ@iunki C ihQ@iunkjQ@junki (1.95)

The cross terms cancel.

iii | ! Chern number of band n:

C Œn�
D

1

2�

Z
T 2

Fijd� ij
D �

1

2�

Z
T 2

Fxy d2k

D
i

2�

Z
T 2

n
hQ@yunkjQ@xunki � hQ@xunkjQ@yunki

o
d2k (1.96)

The integral is best evaluated with differential forms where F D dA is a 2-form and A D

Axdkx C Aydky is a 1-form. Then

C D
1

2�

Z
T 2

F D
1

2�

Z
T 2

�
Q@yAx dky ^ dkx C Q@xAy dkx ^ dky

�
(1.97a)

D �
1

2�

Z
T 2

�
Q@yAx � Q@xAy

�
„ ƒ‚ …

Fxy

dkx ^ dky„ ƒ‚ …
d2k

(1.97b)

where we used dki ^ dkj D �dkj ^ dki .

14 | Compare Eq. (1.93) with Eq. (1.96) !

¡! Important: TKNN formula

�xy D
e2

2�„

X
nW"n<EF

C Œn�
D
e2

h
� with � WD

X
nW"n<EF

C Œn�
2 Z (1.98)
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• In summary: The Hall conductivity of a system with non-degenerate bands that are either
completely filled or completely empty is an integer multiple � of e2=2�„ D e2=h, where
� is the sum of the Chern numbers of the filled bands. This quantization is robust and
independent of microscopic details because the Chern numbers are topological invariants
that are necessarily integer, as long as they are well-defined (= no gaps close).

• ¡! If the Fermi energy lies within a (then partially filled) band, our proof of the quantization of
theHall conductivity breaks down (where?). In this situation, we cannot make any statements
about the value of �xy .

• ¡! Youmight wonder: Where is themagnetic field? In our derivation of theTKNN formulawe
didn’t use it. But in experiments, the quantized Hall plateaus arise when tuning the magnetic
flux through the sample. The answer is that the quantization of the Hall conductivity itself
has nothing to do with a magnetic field. The statement is very clear: Whenever the Fermi
energy lies within a gap, the Hall conductivity is quantized and given by the sum of Chern
numbers of the filled bands. Note that our result is perfectly consistent with these Chern
numbers (and thereby the Hall conductivity) being zero! In that sense we didn’t prove the
exact “staircase” shape of the Hall resistance observed in 2DEGs penetrated by a magnetic
field. We only showed that if the Hall conductivity happens to be non-zero, then it must
come in steps. The role of the magnetic field is twofold: First, it opens gaps „!B between
the Landau levels, so that the conditions for a quantization of �xy are met (namely when all
Landau levels are either full or empty). Second, and this is both crucial and not obvious, it
makes the Landau levels“topological” in that their Chern number isC Œn� D ˙1 (the same for
all n, the sign depends on conventions and the direction of the perpendicular magnetic field).
This then explains the exact structure of the famous Hall resistance plots. One can study
the emergence of Landau levels and their Chern numbers in the ↑ Hofstadter model [17, 78]
(→ Problemset 4). Two different approaches to explicitly compute the Chern numbers of
Landau levels are discussed by Fradkin [63, Chapter 12].)

• In our proof, we explicitly used that the many-body ground state is given by a Fermi sea.
This description is invalidated by interactions between the fermions (e.g. Coulomb interac-
tions). Similarly, our use of Bloch wave functions is invalidated by disorder in the system.
Remarkably, it can be shown that the quantization Eq. (1.98) remains robust under general
perturbations (that break translation invariance and/or add interactions) if these perturbations
are not too strong [76, 79].

• Another subtlety is that all our calculations refer to bulk properties (namely the linear response
of the bulk to a homogeneous electric field). This is not what one measures in experiments
where one attaches point contacts to the boundary of a “Hall bar” (which hosts the 2DEG).
The conductivity (both longitudinal and transversal) is then determined by the properties of
the system boundary and not the bulk. However, due to the → bulk-boundary correspondence,
the topological nature of the bulk directly influences the property of the edge (→ below); in
particular, the total Chern number of the bulk (= filled Landau levels) correlates one-to-one
with gapless chiral edge modes on the boundary. It is the scattering-free transport in these
edge modes that one measures in actual experiments, and the quantized Hall resistance is
due to the number of edge modes that contribute (= are partially filled). Formally, this is
described by the ↑ Landauer-Büttiger formalism [80].

• This formula was first derived by Thouless, Kohmoto, Nightingale, and Nijs in Ref. [17];
hence the name. It is one of the achievements that earned D. J. Thouless the 2016 Nobel
Prize in Physics. Since Thouless got a half-share of the prize, and the Nobel Committee
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cited both his description of the KT phase transition and the TKNN result as motivation,
one can put a Prize tag on Eq. (1.98): 1=4 of a Nobel Prize. I hope you are duly impressed
(you can also be a bit proud of having followed the derivation to this point,).

• One can show that, without adding additional symmetry constraints, the TKNN invariant
(Chern number) is the only quantized topological invariant that can be used to distinguish
gapped bands [81].

• Historically, the first convincing (butmore heuristic) argument for the quantization of theHall
plateaus was already given by Robert Laughlin in 1981 [82]. However, from this derivation
one cannot establish a connection to the Chern number as a topological invariant.

15 | Closing remarks:

The salient feature of the integer quantumHall effect is that a quantity that describes a macroscopic
response of system (theHall conductivity) is exactly quantized and hence impervious tomicroscopic
disorder. This magic turns into comprehension when we go back [to Eq. (1.70)] and realize that
we only showed that the antisymmetric part of the conductivity tensor has a topological character
(remember that we argued the symmetric part away to evade a divergence in the DC limit). Note
that in a conventional conductor (w/o magnetic field) the conductivity tensor is not antisymmetric
but symmetric. So in general we should start with the decomposition

� D �s C �a (1.99)

with �T
s D �s and �T

a D ��a. W/o magnetic field �a vanishes (this is an example of an Onsager
relation [83]). Strictly speaking, we have only shown that the contribution of this antisymmetric
part is topologically quantized. But this contribution is also special in another way. The current
J is the response due to an external electric field: J D �E . The power that is dissipated in
an equilibrium setting (through bumps of the charge carriers with the crystal structure) is then
P D J � E (if J is the current density this is of course the power density); this is known as Joule’s
law. Putting everything together, we find

P D ET �E D ET �sE (1.100)

since ET �aE D .ET �aE/T D ET �T
a E D �ET �aE D 0. Thus only the symmetric part of

the conductivity tensor plays a role for dissipation! But we didn’t show that this part is quantized,
only the“non-dissipative” contribution �a is. So our intuition that a dissipative quantity should
depend on microscopic details and hence not be quantized was right, after all. What we missed
is that not everything about the conductivity tensor is dissipative; there is also a topological (or
geometric) contribution that has nothing to do with microscopic physics. It is this contribution
that gives rise to the integer quantum Hall effect.

There is much more to be said about the physics of the integer quantum Hall effect. Since this a course on
the broader topic of topological phases, we should not linger too long, though. However, there are three
last topics that must be mentioned to prevent misconceptions and embed the IQHE into the Big Picture.
For students who want to dig deeper into quantumHall physics, I can highly recommend the lecture notes
by David Tong [64].

1.5. The role of disorder

The above derivation is based on non-interacting fermions in a translation invariant potential (=w/o disorder).
However, the quantization of the Hall response is more general than that and prevails in the presence of
disorder and/or interactions that do not close the spectral gap above the many-body ground state [76, 79].
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This statement is based on a more general expression for the Hall conductivity that does not rely on the
Brillouin zone (and therefore translation invariance). This approach can also be used to compute the
Hall conductivity of the Landau levels of a continuum system on a torus, see Chapter 12.7 of Fradkin’s
textbook [63].

However, even if we take these statements for granted, there is still a problem that is sometimes swept
under the rug in superficial discussions of the IQHE:

1 | ^ System with fixed electron density n (= fixed chemical potential)

Recall Eq. (1.17): Number of states per LL: N D
AB
ˆ0

Š
D

An
�

! Lowest � 2 N LLs exactly filled for B� D
ˆ0n

�

! Only for the discrete B� the Hall response �xy is topological and thus quantized:
(Here we use that C Œn� D ˙1 for Landau levels, which we did not derive explicitly.)

• For the longitudinal resistivity �xx we used that systems with only completely filled/empty
bands are ↓ band insulators, i.e., �xx D 0 D �yy (, �xx D 0 D �yy). This can be
rigorously shown via a calculation very similar to our derivation in Section 1.4.2, i.e., starting
from the Kubo formula.

• Note that �xx D 0 D �yy and �xy ¤ 0 translates to �xx D 0 D �yy (!) and �xy D �1=�xy :

� D

�
�xx �xy

��xy �yy

�
def
D ��1

D

�
0 �xy

��xy 0

��1

D

�
0 �1=�xy

1=�xy 0

�
: (1.101)

This is not true in general, recall Eq. (1.4).

! This does not explain the observed plateaus!
Recall the experimental data shown previously to motivate our discussion of the IQHE.

The situation is a bit strange: Our hard-earned result (the TKNN formula) explains the quantization
of the height of the plateaus, but not their existence (= finite width).

Solution: Disorder…
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2 | First effect of disorder: LLs are broadened: [�.E/ denotes the ↓ density of states]

! This does still not explain the observed plateaus!
The problem stays the same, whether the LLs are perfectly flat or not.

3 | Second effect of disorder:

• (Most) single-electron states are localized and pinned at local potential peaks/dips

! Do not contribute to conductivity

This pinning of free electron states due to disorder is known as ↑ Anderson localization.

• At least one mode along the edge cannot be localized

! Contributes to conductivity

The existence of these non-localized“edge states” is a topological consequence of the non-
zero Chern number of the LLs: the chirality makes backscattering along the edge impossible
and prevents the edge modes from acquiring a gap [note → below].

A characterization of “Chern bands” (bands with non-zero Chern number) is therefore that
they prevent complete Anderson localization: even with disorder, some states must always
remain delocalized.

! Mobility gap:

! Filling/depletion of broadened LLs for B 7 B� does not affect conductivity as long asEF is in
the mobility gap

! Explains extended Hall plateaus around B� with quantized heightRK=�

4 | In a nutshell:

• Topology fixes the height of the plateaus but

• disorder gives them their finite width (= makes them visible).

¡! This implies that in a (hypothetical) perfectly clean sample, the Hall plateaus cannot be observed.
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1.6. Edge states

So far, we focused on the Hall conductivity �xy , a linear response function of the system; it is a property
of the bulk and does not depend on the presence or absence of boundaries.

Above we have argued that in systems with boundary, there are delocalized single-particle modes running
along the boundary in one direction (determined by the sign of the magnetic field and the sign of the charge
carriers). These edge states on the 1D“surface” of the 2D system cannot be removed by disorder – they
are topologically protected. We will encounter this phenomenon again in our discussion of topological
insulators → later.

1 | Classical picture:

! ⁂ Skipping orbits ! Chiral currents along edges

2 | Quantum picture:

The following discussion provides a heuristic quantum mechanical picture for the emergence of
edge states, the quantization of the Hall conductivity, and its robustness against disorder:

i | ^ Strip geometry:

ii | Hamiltonian in Landau gauge: [recall Eq. (1.14)]

Hk D
1

2m
p2

x C
m!2

B

2
.x C kl2B/

2
CV.x/ (1.102)

V.x/: Potential that varies on length scales � lB
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iii | LL wavefunctions ‰n;k [recall Eq. (1.16)] still eigenfunctions (with shifted energies):

^ Lowest Landau Level:

Eq. (1.16) ! ‰0;k.x; y/ D N eiky e
�

�
xCkl2

B

�2

2l2
B (1.103)

! localized at Xk D �kl2B (with y-momentum k)
! Eigenenergy Ek D

1
2
„!B C V.Xk/

iv | ^ Group velocity in y-direction: (lB D
p

„=eB)

vy
g .X/ D

1

„

@Ek

@k
D
1

„

@Ek

@Xk

@Xk

@k
D �

l2B
„

@V.X/

@X
D �

1

eB

@V.X/

@X
(1.104)

! Current density Iy.x/ D �e v
y
g .x/ �.x/

�.x/: density of occupied states for fixed Fermi energyEF

Note that the system is gapped with „!B in the bulk but gapless on the edges!

! Gapless, chiral edge modes

• The chirality of these modes (i.e., the fact that electrons can move only in one direction
along the edge) is a consequence of time-reversal symmetry breaking (due to the mag-
netic field. It makes the charge transport robust against disorder since backscattering is
impossible (there are no counterpropagating modes in which to scatter).

• This robustness prevents the generation of a gap on the edge (even in the presence
of disorder and/or weak interactions). In the language of field theory, the low-energy
physics on the edge is described by a ↑ chiral Luttinger liquid. Due to the missing
counterpropagating modes, there are no relevant operators that can open a gap.

• The existence of these edgemodes is deeply rooted in topology and a consequence of the
non-zero Chern number of the Landau levels. The general statement that topologically
non-trivial bulk insulators give rise to gapless modes on their boundary is known as
↑ bulk-boundary correspondence [84–86] and one of the striking features of systems with
topological bands.

v | Consistency check: The current along the strip vanishes (at T D 0):

Iy D

Z 1

�1

Iy.x/dx D �e

Z 1

�1

vy
g .x/�.x/dx

1.104
D

1

B

Z 1

�1

@V.x/

@x
�.x/dx (1.105a)

$
e

2�„

Z xR

xL

@V.x/

@x
dx D

e

2�„
ŒV .xR/„ƒ‚…

�R

�V.xL/„ƒ‚…
�L

�
V symmetric

D 0 (1.105b)
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�i � V.xi /: Chemical potential on edge i

That’s good news because there is no voltage applied!

Here we used Eq. (1.17) to show that the electron density of a homogeneous 2DEG with
filled lowest Landau level is given by � D N=A D 1=.2�l2B/ D eB=.2�„/ so that �.x/ D

eB
2�„

1ŒxL;xR�.x/ where 1ŒxL;xR�.x/ denotes the indicator function on ŒxL; xB �.

vi | ^ Hall conductivity:

Apply electric field in x-direction: V.x/ 7! V.x/C eEx ! �R � �L D eVx

Vx : Hall voltage between left and right boundary

! Hall current:

Iy
1.105b
D

e

2�„
.�R � �L/ D

e2

2�„
Vx (1.106)

! Hall conductivity per filled LL:

�xy D
e2

2�„
(1.107)

If the � lowest Landau levels are filled, each contributes Eq. (1.107) to the total conductivity
such that

�xy D
e2

2�„
� ; (1.108)

consistent with the TKNN formula Eq. (1.98) and our (unproven) claim that C Œn� D ˙1 for
Landau levels.

vii | ^ Disorder:

For weak disorder in the potential V.x/ (that does not cross the local Fermi energy), the
above calculation of the Hall current remains correct as it only depends on the chemical
potential at the left and right boundary, but not the behavior of Ek [or equivalently, V.x/] in
between:

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE INTEGER QUANTUM HALL EFFECT

64
PAGE

! The result for the Hall conductivity Eq. (1.107) is robust to disorder!

3 | Chiral edge modes are special:

i | Let us first cite (the special case of ) a no-go theoremwith important consequences:

† Note: Nielsen-Ninomiya-Theorem in 1D

^ Non-interacting fermions on a lattice in 1D:

! Brillouin zone = Circle S1 (= bands must be periodic!)

! Equal number of left ( L) and right movers ( R) in low-energy theories of lattice
models

This insight was formalized by Nielsen and Ninomiya in 1981 [87, 88] for higher-
dimensional (and more important) cases, especially 3C 1 dimensions. Then the fact
that every chiral ↑ Weyl fermion must have a partner when discretized on a lattice
is known as ↑ fermion doubling problem, which is inherent to lattice formulations of
quantum field theories. The no-go theorem prevents lattice discretizations of chiral
theories like the weak sector of the standard model. This implies in particular that there
is (currently) no way to formulate the Standard Model of particle physics completely
and consistently on a lattice! For more details see David Tong’s lecture on gauge
theory [89, Chapter 4].

ii | ! Chiral 1D modes can only appear on the boundary of a 2D bulk material!

Strictly speaking, the argument above applies only to lattice formulations of the IQHE (e.g.
the ↑ Hofstadter model, → Problemset 4) which, however, feature similar chiral edge modes
as the IQHE in its continuum formulation. In the continuum, the proper line of arguments
uses the concept of ↑ gauge anomalies (↑ Ref. [64, Chapter 5 & 6]).

This is an observation that goes deep with far-reaching ramifications: Effective low-energy
theories that describe the gaplessD � 1-dimensional boundaries of gappedD-dimensional
systems can have properties that are – under reasonable assumptions – impossible for “true”
D � 1-dimensional systems (i.e., systems that are not the boundary of some larger system).

iii | Intuitive explanation how to“circumvent” the Nielsen-Ninomiya theorem:
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The magnetic field spatially separates left- and right movers:

iv | Comments

• In bands with non-zero Chern number, no single-particle basis exists where all wave
functions are localized – this is known as a ↑ topological obstruction [90, 91]. Localized
bases constructed from the Bloch wave functions are called ↑ Wannier bases; a non-
zero Chern number therefore forbids the existence of a basis with completely localized
Wannier states.

! Delocalized edge modes

• To proper way to show the existence (and robustness) of the chiral edge modes is to
construct a low-energy effective quantum field theory (QFT). This QFT turns out to
be a gauge theory known as ↑ Chern-Simons (CS) theory (of the “abelian variety” and
with “integer level”). In the presence of a boundary, the gauge invariance of the CS
theory requires the existence of gapless physical degrees of freedom at the edge of the
sample (gauge invariance demands a “chiral Luttinger liquid” on the boundary).

! Robust edge modes

The neat thing about the QFT approach is that it can be directly generalized to the
fractional quantum Hall effect (then the CS theory can become“non-abelian” and is of
“fractional level”). For details see Ref. [64, Chapter 5 & 6].
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↓ Lecture 8 [09.05.25]

1.7. Notes on classification

The IQHE is an important corner stone in the theory of topological phases, both historically and concep-
tually. Starting from the IQHE, there are (at least) two directions to explore:

(1) Keep the QHE setting but consider fractionally filled Landau levels:

! Interactions become important (flat bands!)

! ↑ Fractional quantum Hall Effect (FQHE)

! States with ← (non-invertible) topological order
with anyonic excitations and fractional charges (depending on the filling)

(2) Leave the QHE setting but stay in the realm of non-interacting fermions (on the lattice):

! Construct lattice models with topological bands…

• …w/o magnetic fields (?)

• …w/o breaking time reversal symmetry (?)

• …w/o particle-number conservation (?)

! → Topological insulators & superconductors
[SPT phases of non-interacting fermions & invertible topological orders]

In the following we will pursue Path 2 which will eventually lead us to the“periodic table of topological
insulators and superconductors” in Chapter 6.

Note:

IQH states (= filled Landau levels) are part of the classification of topological phases of non-interacting
fermions that we will introduce [92]. However, they are also long-range entangled [35], but this long-
range entanglement is of a special “boring” kind in that it does not give rise to fancy anyonic statistics of
excitations. In our nomenclature, IQH states are examples of ← invertible topological order. (You can locally
disentangle a IQH state by“gluing” a time-inverted copy on top.)

According to another naming scheme [different from the one I introduced], IQH states are “short-range
entangled” because they lack anyonic excitations and their → topological entanglement entropy vanishes

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE INTEGER QUANTUM HALL EFFECT

67
PAGE

[36, 37]. Because of the time-reversal symmetry breaking and the chiral nature of their edge modes, some
call IQH states simply chiral phases [93, 94].

It is noteworthy that symmetry does play a role for the IQH, namely the U.1/ symmetry that describes the
conservation of charge. It does neither protect the entanglement structure nor the chiral edge states, but it is
necessary for the quantization of the Hall response [35, 93, 94]. (Which makes sense: in a material where
charge can randomly enter or leave the sample, there is no reason for a conductivity to be quantized.)
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2. Topological Bands without Magnetic Fields:
The Quantum Anomalous Hall Effect

2.1. Preliminaries

We seek for models with the following properties:

• Lattice model (of non-interacting fermions)

• Band insulator

• Non-zero Chern number

• No magnetic field (!)

The first three conditions are satisfied by the ↑ Hofstadter model, a lattice model that captures the IQHE
physics. However, the Hofstadter model is a rather complicated multiband model due to the enlarged
magnetic unit cell (→ Problemset 4). This motivates the question:

Are there models without external magnetic field that have Chern bands?

• Chern band = Band with non-zero Chern number

• Note that the sum of Chern numbers of all bands is always zero (→ Problemset 3). Thus, if the
answer to this question is affirmative, the model must have at least two bands. This can be achieved
either with an internal degree of freedom (spin) or, alternatively, with sublattice degrees of freedom
(i.e., a unit cell with more than one site).

Before we proceed, let us fix the nomenclature:

⁂ Definition: Chern insulator

Chern insulator* (CI*) WD

8̂<̂
:

Lattice model
Band insulator
Non-zero Chern number

(2.1)

Prototype: ↑ Hofstadter model

Chern insulator (CI) WD

8̂̂̂<̂
ˆ̂:

Lattice model
Band insulator
Non-zero Chern number
No external magnetic field

(2.2)

Prototype: → Haldane model
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With this definition, the above question can be restated:

Are there Chern insulators?

Before we focus on specific models, let us explore some generic properties of translation invariant models
with two bands:

2.1.1. Lattice models with two bands

1 | General setting: (The following is crucial throughout Part I!)

We start with a brief review of Hamiltonians that describe non-interacting fermions in translation
invariant lattice models (here with any number of bands in any dimension):

i | ^ Single-particle (SP) Hilbert space H D span fj‰i˛igi˛ with SP Hamiltonian

H D

X
i˛;jˇ

Hi˛;jˇ j‰i˛ih‰jˇ j (2.3)

i D 1 : : : N : site index
˛ D 1 : : :M : internal degrees of freedom (e.g. multiple sites per unit cell, spin,…)

ii | ! Many-body (MB) Hilbert space OH D
L

n

Vn
.H / with MB Hamiltonian

OH is the fermionic ↓ Fock space (the ↑ exterior algebra of H );
Vn denotes the nth ↑ exterior

power of the single-particle Hilbert space H .

OH D

X
i˛;jˇ

c
�
i˛Hi˛;jˇcjˇ (2.4)

c
�
i˛=ci˛: fermionic creation/annihilation operators for fermion in state j‰i˛i

The fact that this Hamiltonian only includes quadratic terms of fermionic operators makes it
exactly solvable; one says that OH describes quadratic fermions, non-interacting fermions, or
free fermions.

iii | Assume Translation symmetry
ı
�!

OH D

X
kI˛;ˇ

c
�
k˛
H˛ˇ .k/ckˇ (2.5)

with ⁂ momentum modes

ck˛ WD
1

p
N

X
i

eixi kci˛ (2.6)

xi : position of site i

iv | So the SPHamiltonian decomposes asH D
L

kH.k/ with ⁂ Bloch HamiltonianH.k/
(a HermitianM �M -matrix).

Diagonalizing the latter yields

H.k/ D

X
n

En.k/junkihunkj (2.7)
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• jukni: Bloch wavefunction

• n D 1 : : :M : band index

• En.k/: SP spectrum

! The SP Hilbert space decomposes as H D
L

k Hk with momentum mode space
Hk D span fjunkign.

2 | We now specialize to models with two bands on a 2D lattice…

^ Most general two-band Hamiltonian on a 2D lattice:

H D

M
k2T 2

H.k/ with H.k/ D ".k/1C Ed.k/ � E� (2.8)

• T 2: Brillouin zone (BZ) (= Torus)

• �˛ with ˛ D x; y; ´: Pauli matrices

• Ed.k/ W T 2 ! R3: real, vector-valued function on BZ

The two spatial dimensions are responsible for the Brillouin zone being a 2-torus T 2, the two bands
allow us to expand the Hermitian 2 � 2-matrixH.k/ into Pauli matrices.

3 | Spectrum:

E˙.k/ $ ".k/˙ j Ed.k/j (2.9)

! Band insulator iff

min
k2T 2

EC.k/ > max
k2T 2

E�.k/ (2.10)

Strictly speaking, this condition allows the system to be a band insulator if the chemical potential
(= Fermi energyEF ) is in the gap (which the above condition guarantees to exist). We assume this
situation in the following: mink2T 2 EC.k/ > EF > maxk2T 2 E�.k/.

^ Weaker condition:

8k 2 T 2
W EC.k/ �E�.k/ D 2j Ed.k/j > 0 (2.11)

This means that the two bands never touch and/or intersect.

! Normalization possible:

Od.k/ WD

Ed.k/

j Ed.k/j
such that Od W T 2

! S2 (2.12)

S2: unit sphere in R3

4 | Chern number of the lower band:

C $ �
1

4�

Z
T 2

(Oriented) Jacobian for surface integral
/ Berry curvature‚ …„ ƒ

Od.k/ � ŒQ@x
Od.k/ � Q@y

Od.k/� d2k„ ƒ‚ …
4�Z

2 Z (2.13)

Derivation: → Problemset 5
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5 | Geometric interpretation:

The expression for the Berry curvature is just the ↓ Jacobian for the (oriented) surface integral
over the sphere S2:

i | ! C counts how often Od.k/ covers S2 when sweeping over the Brillouin zone T 2

Note that this can only happen in integer steps since the area element in Eq. (2.13) is oriented:
“going back” counts negative.

ii | C D C Œ Od� 2 Z is a topological invariant

This implies in particular that twodifferentmaps Oda and Odb that can be continuously deformed
into each other must have the same winding number C .

Mathematically this follows because Eq. (2.13) is a continuous function of Od and maps into
the integers. It is a well-known fact from topology that such functions are constant on their
domain.

iii | HamiltonianHa can be continuously deformed intoHb without closing the gap

, Oda can be continuously deformed into Odb

Note that when the gap closes, the normalized vector Od has a singularity (= is undefined)
somewhere on T 2 so that Eq. (2.13) is undefined as well.

iv | ! C labels different topological phases

6 | ‡ Skyrmion interpretation:

i | The region on T 2 where the field Od.k/“wraps around the sphere” can be quite localized.
This creates a local “knot” in the field that can be viewed as an excitation of a specific type
of non-linear field theory known as ↑ non-linear sigma models. In this (very different) context,
these localized excitations are called ↑ skyrmions (after Tony Skyrme who introduced
them to describe the strong force [95]); they are an example for ↑ topological solitons. Here
an illustration of a skyrmion that represents a field Od wrapping once around the sphere:
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ii | If the direction how the field sweeps over the sphere is inverted, one ends up with an anti-
skyrmion. A single skyrmion is a topologically protected field configuration and cannot be
removed by continuous deformations of Od (this is just our argument from above about the
topological character of C restated in terms of skyrmions). However, a skyrmion and an
antiskyrmion can be continuously removed (they“annihilate” each other):

(This is a 1D cut through the 2D surface on which the skyrmion-antiskyrmion pair lives.)

iii | Summary:

• Skyrmions are “twists” of Od and“live” on the BZ

• Positive (negative) Berry curvature indicates a finite (anti-)skyrmion density

• The Chern number is the number of skyrmions minus the number of antiskyrmions
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iv | An interesting mathematical tangent:

† Note: Pontryagin number

The fact that Od lives on a torus T 2 (the Brillouin zone) is not important in this situation.
Thus it is possible to replace the torus T 2 by a sphere S2 (which can be seen as the
one-point compactified momentum space R2 of the continuum). Then

Od W S2
! S2 (2.14)

is a continuous function that maps the sphere onto the sphere. Two HamiltoniansHa

and Hb belong to the same phase, if the corresponding functions Oda and Odb can be
“smoothly deformed” into each other.

In topology, such a smooth deformation of one function into another is known as
a ↑ homotopy; the set of equivalence classes under homotopy has a group structure
and is known as (second) homotopy group of S2, write �2.S

2/; it is well-known that
�2.S

2/ D Z. The equivalence classes in �2.S
2/ can be labeled by an integer known

as ↑ Pontryagin number; it counts how often a map Od traces out the (target) sphere S2

when sweeping the (domain) sphere S2. In the current situation, this is exactly the
Chern number C .

That the torus can be replaced by a sphere is also evident in the skyrmion picture. Since
the skyrmions can be localized, they do not care whether they live on a torus or a sphere:

However, note that Od can have “twists” around the torus that are not reflected in
the Chern number (and are not related to skyrmions). These “twists” give rise to
↑ weak topological indices which can have physical effects on the boundary physics in
specific directions [57, 96, 97]. Since these effects rely on the domain of Od to be a
torus (= Brillouin zone), they are protected by the translation symmetry of the lattice
(this makes them“weak”). Weak topological indices are not important for the models
discussed below.
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2.1.2. Time-reversal symmetry (TRS)

¡! We will introduce time-reversal symmetry as the first of three“generic” symmetries and discuss the
restrictions it imposes on the Bloch HamiltonianH.k/. It plays a role for the → Haldane model but not as
protecting symmetry; quite the contrary: it must be broken to make the model interesting (recall that the
IQHE – which we would like to mimic – is not an SPT phase). However, in upcoming lectures (throughout
Part I) we will use this symmetry as a protecting symmetry instead, which then leads us to the concept of
→ topological insulators and their classification.

1 | ^ Single particle with SP Hilbert space H :

TRS T W t 7! �t is a Z2-symmetry (inverting time twice should do nothing!)
and sould reasonably act as

T xT �1 Š
D x but TpT �1 Š

D �p (2.15)

! T i„T �1 D T Œx; p�T �1 D �Œx; p� D �i„

! T must be antiunitary:

TU D UK with K D Complex conjugation (2.16)

U : unitary operator that determines the representation TU of T on the SP Hilbert space

↑ Wigner’s theorem [98] states that a symmetry (i.e. an operator O that preserves all probability
amplitudes, jhO‰jOˆij2 D jh‰jˆij2) acts either as a unitary or an antiunitary operator on the
Hilbert space (→ Problemset 1). In combination with T iT �1 D �i , this fixes T to the generic
form TU above.

! SP HamiltonianH is ⁂ time-reversal symmetric iff ŒH; TU � D 0

for a U chosen appropriately to describe the system (→ below)

Explicitly the condition for time reversal symmetry reads:

HUK D HTU D TUH D UKH , HU D UH�
, H D UH�U � (2.17)

2 | TU is antiunitary !

T 2
U D UU �

D U.U T /�1 (2.18)

TU is projective representation of Z2 !

T 2
U D �1 with j�j D 1 (2.19)

• Being a → projective representation of Z2 realizes our notion that inverting time twice should
bring us back to the same physical state: Because physical states are rays (→ Problemset 1),
this only means that T 2

U applied to a state vector gives back the same vector up to a phase. This
phase must be the same for all states since otherwise you could superimpose two states with
different phases to construct a state that transforms to a physically distinct state under T 2

U –
in contradiction with our assumption that inverting time twice has no physical consequences.

• Here is an alternative, more generic line of arguments that does not require the assumption
that time reversal is a Z2 symmetry as input [92]:

Assume that you made the total Hamiltonian block-diagonal by“using up” all its potential
unitary symmetries. Then each block carries an irreducible representation of the unitary
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symmetry group and an“irreducible Hamiltonian” so that the arguments below hold. How
T is represented in each block can vary, however the result for T 2 must be the same on
all blocks because otherwise T is not a (projective) representation of Z2 on the whole SP
Hilbert space—and this would contradict our intuition that applying time-reversal twice
does nothing.

Now go back to Eq. (2.18) and note that…

– UU � is unitary

– ŒH;UU �� D 0! UU � is a symmetry ofH

^ GenericH without any additional unitary symmetries
! Hamiltonian irreducible
! T 2

U D UU � D �1

(This is an application of ↑ Schur’s lemma on the irreducible Hamiltonian.)

Eqs. (2.18) and (2.19) ) U D �U T �T

() U T
D U� (2.20a)

) U D �2U (2.20b)

) � D ˙1 (2.20c)

!

T 2
U D ˙1 (2.21)

If T 2
U D �1, TU is an antiunitary, projective representation of Z2.

3 | Examples:

• ^ Spinless particles: (=no internal degrees of freedom)

T0 WD 1„ƒ‚…
U0

K ) T 2
0 D C1 (2.22)

• ^ Spin-1
2
particles with spin operator ES D

„
2

E�

Just as time reversal inverts the linear momentum p, it should also invert (internal) angular
momentum (= spin):

TU
EST �1

U

Š
D � ES (2.23)

So we want that TU �
iT �1

U

Š
D �� i for all Pauli matrices i D x; y; ´.

Note that this choice is not arbitrary. For example, it is inconsistent to demand (nonzero)
spin to be invariant under time-reversal (TUSiT

�1
U D Si ) because then ŒSi ; Sj � D i�ijkSk

(which defines spin operators) implies ŒSi ; Sj � D �i�ijkSk (since TU is still antiunitary)
such that Sk D 0 �.

! Solution:

T 1
2

WD �y„ƒ‚…
U 1

2

K ) T 2
1
2

D �1 (2.24)
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– Note how TU �
iT �1

U D �� i is satisfied: for i D y it follows from the complex conjuga-
tion K (antiunitarity), but for i D x; ´ it follows because �x and �´ are real matrices
that anticommute with �y .

– The statement T 2
U D �1 is true for all particles with half-integer spin (but with other

choices for U that depend on the spin, of course).

– Often you will find the choice T 1
2

D �i�yK . This follows if one derives T 1
2
as a spin

rotation. Note that you can multiply T 1
2
with an arbitrary phase without changing its

algebraic properties.

4 | Consequence of T 2
U D �1:

¡! Important: Kramers theorem

Every eigenenergy of a time-reversal invariant Hamiltonian H with T 2
U D �1 is at least

two-fold degenerate.

Proof: → Problemset 5

The theorem was discovered byHans Kramers in 1930 and mathematically studied on general
grounds by Eugene Wigner in 1932 [99]. It has far-reaching consequences: For instance, the
degeneracy of atomic energy levels with half-integer total angular momentum cannot be lifted
completely by electric fields alone (which preserveTRS); instead, magnetic fields are needed (which
break TRS). → Later we will see that Kramers theorem restricts the band structure of time-reversal
invariant systems in that it requires crossing bands at so called → time-reversal invariant momenta
(TRIMs) in the Brillouin zone.
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↓ Lecture 9 [15.05.25]

5 | Action of TRS on Fock space:

Nowwe generalize these single-particle concepts to the many-body Hilbert space and Hamiltonian:

i | ^ Representation TU of TRS on the fermionic Fock space OH :

⁂ Definition: Time-reversal symmetry

Time-reversal TU is antiunitary, TU iT
�1

U WD �i , and acts on fermion modes as

TU ci˛T �1
U WD

X
ˇ

U
�

˛ˇ
ciˇ and TU c

�
i˛T �1

U WD

X
ˇ

.U
�

˛ˇ
/�„ ƒ‚ …

Uˇ˛

c
�

iˇ
: (2.25)

Note that we assume that time-reversal only mixes internal degrees of freedom (˛; ˇ)
but not spatial ones (i). This restriction complies with our everyday experience and
simplifies the following discussion. Furthermore, we assume that TRS acts on every
site in the same way (which is reasonable for translational invariant systems).

ii | Let us check that this definition of TRS on OH is consistent with our definition on H above:

TU
OHT �1

U D

X
i˛0;jˇ 0

c
�
i˛0

X
˛;ˇ

h
U˛0˛H

�
i˛;jˇU

�

ˇˇ 0

i
cjˇ 0 (2.26a)

Š
D

X
i˛0;jˇ 0

c
�
i˛0Hi˛0;jˇ 0cjˇ 0 D OH (2.26b)

ı
�! [use the form Eq. (2.17)]h

OH; TU

i
D 0 , TUHT

�1
U D H

with TU D NUK where NU WD ˚iUi with Ui � U (2.27)

This is the form of TRS in the SP Hilbert space that we discussed earlier (where the role of
U is now played by NU since we have single-particle states on each site).

Note that NU is a unitaryNM �NM -matrix whereas U is a unitaryM �M matrix.

iii | We want to consider translation invariant systems !

TU ck˛T �1
U

2.6
D

1
p
N

X
i

e�ixi k
X

ˇ

U
�

˛ˇ
ciˇ D

X
ˇ

U
�

˛ˇ
c�kˇ (2.28)

! TU inverts momenta & mixes internal DOFs

iv | For a time-reversal symmetric many-body Hamiltonian we find:

TU
OHT �1

U

2.5
D

X
kI˛0;ˇ 0

c
�
�k˛0

X
˛;ˇ

h
U˛0˛H

�
˛ˇ .k/U

�

ˇˇ 0

i
c�kˇ 0 (2.29a)

Š
D

X
kI˛0;ˇ 0

c
�
�k˛0H˛0ˇ 0.�k/c�kˇ 0 D OH (2.29b)

In the last equation we substituted k ! �k.
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v | Thus we find a constraint on the Bloch Hamiltonians:

h
OH; TU

i
D 0 , QTUH.k/ QT �1

U D H.�k/

with QTU D UK

(2.30)

Note that QTU maps between themode spacesH .k/ andH .�k/ since TRS inverts momenta!

Summary:

Time-reversal invariance can be expressed equivalently as follows:

h
OH; TU

i
D 0 , TUHT

�1
U D H

, NUH� NU �
D H

, QTUH.k/ QT �1
U D H.�k/

, UH�.k/U �
D H.�k/

(2.31a)

(2.31b)

(2.31c)

(2.31d)

The last two lines are only defined if the system is translation invariant, the first two are generic.

• In words: A (non-interacting) many-body Hamiltonian OH is time-reversal invariant if its
single-particle HamiltonianH is unitarily equivalent to its complex conjugate.

• Note that often the formal distinction between TU and QTU is not made in the literature
(similarly for NU and U ) and one simply writes TU (or even just T ) for both.

• Conditions like NUH� NU � D H are sometimes referred to ↑ reality conditions on the Hamilto-
nian [92]. We will encounter another example when we discuss particle-hole symmetry later
in this course.

Furthermore:

T 2
U D C1 , QT 2

U D C1 , T 2
U $ C1

T 2
U D �1 , QT 2

U D �1 , T 2
U $ .�1/

ON

(2.32a)

(2.32b)

ON WD
P

i˛ c
�
i˛ci˛: total fermion number operator

P WD .�1/
ON is the fermion parity operator.

¡! Note that for T 2
U D �1 it is T 2

U D .�1/
ON and not T 2

U

�
D �1, i.e., the representation depends

on the fermion parity sector. This makes sense: If T 2
U D �1, the fermions have half-integer spins

(← above). According the rules of ↓ angular momentum addition, an even (odd) number of such
particles have integer (half-integer) total angular momentum, consistent with T 2

U D C1 (N even)
and T 2

U D �1 (N odd).

6 | Consequence of TRS for the Spectrum:

H.k/junki D En.k/junki (2.33a)

(2.31d)
HHHH) H.�k/U junki

�
D En.k/U junki

� (2.33b)
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! Eigenstate U junki� ofH.�k/ has same energyEn.k/ as eigenstate junki ofH.k/

! Inversion-symmetric band structure

This means that for TRI systems, one half of the BZ is determined by the other half via QTU . This
motivates the introduction of a so called → effective Brillouin zone (EBZ) (essentially “half” the
original BZ) which has the topology of a cylinder [100].

7 | Consequence of TRS for the Chern number: [Remember: H.k/ D ".k/1C Ed.k/ � E�]

• ^ Two bands from pseudo-spin-1
2
: QT0 D K

“Pseudo-spin-1
2
” refers to degrees of freedom that are not related to angular momentum and

therefore remain invariant under time reversal (e.g. sublattice degrees of freedom).

H�.k/ D H.�k/
(2.8)
,

(
dx;´.k/ D dx;´.�k/

dy.k/ D �dy.�k/
(2.34)

Note that Eq. (2.34) implies j Ed.k/j D j Ed.�k/j such that Odx;´.k/ D Odx;´.�k/ and Ody.k/ D

� Ody.�k/ follows also for the normalized Bloch vector.

• ^ Two bands from real spin-1
2
: QT 1

2
D �yK

�yH�.k/�y
D H.�k/

(2.8)
, Ed.k/ D � Ed.�k/ (2.35)

Again it follows also for the normalized Bloch vector Od.k/ D � Od.�k/.

Both cases !

C
2.13
D �

1

4�

Z �

��

dkx

Z �

��

dky�ijk
Odi .k/Q@x

Odj .k/Q@y
Odk.k/ $ 0 (2.36)

This follows since Odi .k/Q@x
Odj .k/Q@y

Odk.k/ is antisymmetric for both representations if i; j; k are
pairwise distinct (which is enforced by �ijk). !

¡! Important

Systems with Chern bands must break time-reversal symmetry.

This is true in general, i.e., even for models with more than two bands.

• Note that this is completely consistent with the IQHE (or the Hofstadter model) where we
found Chern bands and the magnetic field breaks TRS.

• This also makes sense from another perspective: Conductivity transforms as � 7! �� under
time-reversal since EJ D � EE and EJ 7! � EJ but EE 7! EE (↓ Maxwell equations). Thus in a
time-reversal invariant system it must be � D �a C�s D 0. Note that �a ¤ 0 indeed requires
a magnetic field (which breaks time-reversal symmetry) and �s ¤ 0 requires dissipation
(recall the ← Drude model) and breaks time-reversal symmetry because of entropy production.

• This is a restriction (and a hint) for the construction of a Chern insulator.
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2.1.3. Dirac fermions

As last preliminary step, we introduce a class of free fermion Hamiltonians in the continuum that is very
useful to understand topological bands; we will use it as a starting point to construct our first Chern
insulator on the lattice:

1 | ^ ↓ Dirac equation in 2D: („ D 1)

HD‰ D

 
ˇmC

2X
nD1

˛npn

!
‰ D i@t‰ (2.37)

For a motivation/derivation in 3D see my script on ↑ Quantum Field Theory [101, Section 3.1].

with

• ˛1; ˛2; ˇ: Hermitian matrices

• ˛2
1 D ˛2

2 D ˇ2 D 1

• f˛1; ˛2g D fˇ; ˛1g D fˇ; ˛2g D 0

! Solution: ˛1 D �x , ˛2 D �y , ˇ D �´ with 2-dimensional spinor ‰ D ‰.t;x/

In 3D there is a third ˛-matrix and the algebra can only be solved by 4 � 4-matrices (↓  -matrices).

2 | Fourier transform of HD (k 2 R2):

Note that the spinor‰.t;x/ lives on continuous space x 2 R2, not on a lattice!

HD.k/ D kx�
x

C ky�
y

Cm�´
D Ed.k/ � E� with Ed.k/ D

0@kx

ky

m

1A (2.38)

Here we used that in Fourier space the momentum operator pn D �i@n is simply kn.

Fermions in condensed matter physics that are (approximately) described by a 2-band Bloch Hamil-
tonian of the form Eq. (2.38) are therefore known as ⁂ Dirac fermions (this also refers to more
general Hamiltonians linear in k, → below).

! Spectrum:

E˙.k/
2.9
D ˙j Ed.k/j D ˙

p
k2 Cm2 (2.39)

! Gapped if m ¤ 0

This is where the name“mass gap” comes from.

3 | Time-reversal symmetry:

• QT0 D K ! dx.k/
Š

D dx.�k/ ! HD not TRI!

• QT 1
2

D �yK ! d´.k/
Š

D �d´.�k/ ! HD not TRI for m ¤ 0!

!HD is only TRI form D 0, but there the gap closes anyway!

! Non-zero Chern number possible…

4 | Berry curvature: (of the lower band)

Fxy.k/ $
m

2.k2 Cm2/3=2
(2.40)
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Proof: → Problemset 5

Use the form Eq. (2.13) to show this and remember that here momentum space is not a torus
(Brillouin zone) but R2 (→ next).

5 | “Chern number”: (→ Problemset 5)

C
2.13
D �

1

2�

Z
R2

Fxy.k/ d2k D �

Z 1

0

mk

2.k2 Cm2/3=2
dk $ �

sign.m/
2

(2.41)

Why C … Z?

The quantization of C is based on Stokes theorem (← Section 1.3.1) which is only valid for integra-
tions over compact manifolds (sphere, torus). Here, however, we integrate over the non-compact
R2 instead, so we cannot expect C to be quantized.

Remember the geometric interpretation of the Chern number for two-band models as the number
of times the sphere S2 is covered by the Bloch vector when sweeping over momentum space
(← Section 2.1.1). When you are on a non-compact space like R2, you can start at one point where
the Bloch vector points, say, at the north pole of S2. Then you let the vector continuously move
towards the equator of S2 for jkj ! 1 where the direction on S2 is determined by the direction
of k in R2. This produces a continuous function Od.k/ that wraps S2 only“half.” Convince yourself
that this construction necessarily fails on a compact momentum space like S2 or T 2.

Eq. (2.41) ! Change from m < 0 to m > 0 ) Change of Chern number �C D �1

6 | ^ 2-Band lattice modelH�.k/ D "�.k/1C Ed�.k/ � E�

� : parameters of the model

We say that K 2 T 2 is a ⁂ Dirac point if

H�.K C k/ D vF

�
kx�

x
C ky�

y
C vFm� �

´
�

C O.k2/ (2.42)

m� D 0 ! Band structure at K : E˙.K C k/ D ˙vF jkj ! ⁂ Dirac cone

vF : Fermi velocity (corresponds to the speed of light c in the Dirac equation)

In the following we set always jvF j D 1.

Dirac points are interesting because they harbour“half a (anti-)skyrmion” (depending on the sign of
m� ). When the sign ofm� changes at a gap closing (by varying �), this can change the (quantized)
Chern number of the bands by ˙1 (as discussed ← above).
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2.2. The Qi-Wu-Zhang Model

Historically, the Haldane model (see → below) was the first Chern insulator. However, it is not the simplest
one (at least its momentum space representation is rather complex due to the honeycomb lattice). Later,
Qi,Wu and Zhang introduced a simpler model on the square lattice [102] which we will discuss first.
“Simpler” refers here to its representation in momentum space – the real-space representation of the
QWZmodel is rather unintuitive.

1 | Idea: “Regularize” Dirac Hamiltonian on a lattice !

^ HQWZ.k/ D Ed.k/ � E� with

dx WD sin.kx/ D kx C O.k2/ (2.43a)

dy WD sin.ky/ D ky C O.k2/ (2.43b)

d´ WD �mC 2 � cos.kx/ � cos.ky/ D �mC O.k2/ (2.43c)

m 2 R: only parameter of the theory

• The inverted sign ofm is convention and motivated by the results (→ below).

• The two bands are interpreted as spin-1
2
degrees of freedom of fermions hopping on a square

lattice (→ below).

2 | Spectrum: E˙.k/ D ˙j Ed.k/j ¤ 0 for all k 2 T 2 n f� ;X ;Y ;Mg with

In the sketch we indicate for which parameterm the gap closes at which point in the BZ. This follows
directly by inspection of d´ in Eq. (2.43c).
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↓ Lecture 10 [16.05.25]

3 | Phases:

With our knowledge from Section 2.1.3 we can now classify the four gapped phases separated by
phase transitions atm D 0; 2; 4:

• m < 0:

Remember that neither the quantum phase nor the Chern number changes as long as the
gap does not close. Hence we can choose a limit in the phase for m < 0 that makes the
computation of the Chern number particularly simple:

^ m ! �1 ! Ed.k/ � �mEe´ ! C.m < 0/ D 0 ! Trivial band insulator

Recall that C counts the skyrmions in the BZ, i.e., how often Od.k/ D Ed.k/=j Ed.k/j“wraps”
around the sphere S2. But if Ed is pinned to the north pole of S2, it cannot “wrap” anything.

• m > 4:

^ m ! C1 ! Ed.k/ � �mEe´ ! C.m > 0/ D 0 ! Trivial band insulator

The argument is the same as form < 0.

• 0 < m < 2:

^ Transition from m < 0 to m > 0 ! Gap closing at � :

HQWZ.� C k/ D kx�
x

C ky�
y

�m�´
C O.k2/ (2.44)

Eq. (2.41) !

C.0 < m < 2/ D C.m < 0/C�C.m < 0 ! m > 0/ (2.45a)

D 0 �

�
sign.�m/jm>0

2
�

sign.�m/jm<0

2

�
(2.45b)

D C1 (2.45c)

! Topological phase (I)

• 2 < m < 4:

^ Transition from m > 4 to m < 4 ! Gap closing at M :

HQWZ.M C k/ D �kx�
x

� ky�
y

C .4 �m/�´
C O.k2/ (2.46)

The negative signs of the momenta do not affect the result for the Chern number. You show
this on → Problemset 5, see also Eq. (2.60) in Section 2.3 later.

Eq. (2.41) !

C.2 < m < 4/ D C.m > 4/C�C.m > 4 ! m < 4/ (2.47a)

D 0 �

�
sign.4 �m/jm<4

2
�

sign.4 �m/jm>4

2

�
(2.47b)

D �1 (2.47c)

! Topological phase (II) ¤ Topological phase (I)
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In summary, this leads us to the…

Phase diagram:

• The two trivial phases form < 0 andm > 4 are the same trivial quantum phase, i.e., they
can be connected by continuously deforming the Hamiltonian without closing the gap. To do
this, start from the limitm � 0 where Ed points to the north pole and then rotate this vector
[more precisely: this (almost constant) function] continuously to the south pole (without
changing its length). Then you end up in the phase form � 4 while the gap on the path was
always on the order of j Ed j (i.e., very large).

• By contrast, the two topological phases I and II are different quantum phases that cannot be
connected by smooth deformations of the Hamiltonian without closing the gap. This follows
from the discreteness of the Chern number and the definition of the latter in terms of the
normalized Bloch vector Od.k/.

• Note that we can compute C.2 < m < 4/ alternatively via the transition from m < 2 to
m > 2. At this transition there are two Dirac points (X and Y ), each of which contributes a
change of the Chern number by �1 which explains the jump from C.0 < m < 2/ D C1 to
C.2 < m < 4/ D �1.

• It is recommended to plot Ed.k/ on the BZ as a vector field and observe the changes form < 0

tom > 4 (in Mathematica you can use the Manipulate function to visualize the changes).
Try to count the skyrmions, i.e., how often Ed.k/“wraps” around the sphere (and in which
direction).

Here is an animation (courtesy of Tobias Maier) of the Berry curvature on the Brillouin
zone where m ramps from m < 0 to m > 4 and the Chern number (integral of the Berry
curvature) is shown on the top:

→Animation of the Berry curvature (GIF)

The wrapping of the Bloch vector can be seen if, instead of the Berry curvature, the ´-
component d´.k/ is plotted:

→Animation of d´ (GIF)

Note how (in the topological phases 0 < m < 4) d´ goes from the north pole (red) to the
south pole (blue), thereby wrapping the sphere S2 once when traversing the Brillouin torus.

4 | Real-space Hamiltonian:

The real-space Hamiltonian of the QWZmodel is defined on a square lattice with spin-1
2
fermions

on the sites (the spin DOF is responsible for the two bands):
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i | SP Hilbert space spanned by

j‰i˛i ! jx; yi„ƒ‚…
external

˝ j�i„ƒ‚…
internal

(2.48)

x D 1; : : : ; Nx : x-position
y D 1; : : : ; Ny : y-position
� D ˙1: spin

The Pauli algebra is then represented as follows:

�x
D jC1ih�1j C j�1ihC1j (2.49a)

�y
D i j�1ihC1j � i jC1ih�1j (2.49b)

�´
D jC1ihC1j � j�1ih�1j (2.49c)

ii | SP Hamiltonian:

HQWZ $ �

X
x;y

�
jx C 1; yihx; yj ˝

�´ � i�x

2
C h.c.

�
�

X
x;y

�
jx; y C 1ihx; yj ˝

�´ � i�y

2
C h.c.

�
�.m � 2/

X
x;y

jx; yihx; yj ˝ �´

(2.50)

• The kinetic terms of the Hamiltonian (hopping in x- and y-direction) couple the spatial
(“orbital”) motion with the internal (“spin”) degrees of freedom. This is an example
of ↓ spin-orbit coupling in a lattice model.

• Fourier transformHQWZ in both spatial directions and show that the Bloch Hamiltonian
isHQWZ.k/ as defined above.

Pictorially:

iii | Note that there is no magnetic field involved and therefore no magnetic unit cell necessary.

! This makes the QWZmodel our first Chern insulator! ,

(For the parameters 0 < m < 2 or 2 < m < 4, otherwise it is a trivial band insulator.)

Strictly speaking, we should use the SP Hamiltonian (2.50) to construct via Eq. (2.4) the
corresponding second quantized MB Hamiltonian OHQWZ that acts on fermionic Fock space.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE QUANTUM ANOMALOUS HALL EFFECT

86
PAGE

The topological phase is then realized by the many-body ground state of OHQWZ for 0 < m < 2

or 2 < m < 4. This ground state is the Fermi sea obtained by filling the lower of the two
bands (both of which are Chern bands; recall that the sum of all Chern numbers always
vanishes, → Problemset 3).

2.3. The Haldane Model

• Historically, the Haldane model (HM) on the honeycomb lattice was the first model that realized
the phenomenology of the IQHE without (external) magnetic fields (and therefore without Landau
levels) [19]; this phenomenon is nowadays referred to as ⁂ quantum anomalous Hall effect (QAHE).

• Hence the Haldane model is also regarded as the prototype of a ← Chern insulator. However, some
also refer to the ← Hofstadter model as a Chern insulator* [35].

• Regarding classification (← Section 0.6), the Haldane model belongs to the same ← invertible
topological order as the IQHE (← Chapter 1): it features chiral edge modes but no anyonic excitations
and is not protected by any symmetry (only quantization of the Hall response requires charge
conservation).

• Haldane discussed this model in his 2016 Nobel Lecture [103].

1 | Rationale of the following construction:

1. Start with the Hamiltonian of ↓ graphene:
! 2 Dirac cones in the BZ (but not gapped!)

2. Add a staggered potential (parameterm) to break the → sublattice symmetry (SLS) (→ ??):
! Gap opens at Dirac points but Chern number is zero since TRS is not broken.
! Dead end! /

3. Add instead a complex next-nearest neighbor (NNN) hopping (strength t and phase ') to
break ← time-reversal symmetry:
! Gap opens at Dirac points and Chern number is non-zero.
! Success! ,

4. Map out the phase diagram in them=t -' plane.
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2 | ^ Real-space MB Hamiltonian on the honeycomb lattice:

OHH D

X
hi;j i

c
�
i cj„ ƒ‚ …

Graphene

C m
X

i

�ic
�
i ci„ ƒ‚ …

Staggered potential

C t
X

hhi;j ii

e�ij i'c
�
i cj„ ƒ‚ …

Complex NNN hopping

(2.51)

• hi; j i: Nearest-neighbours (NN)

• hhi; j ii: Next-Nearest-neighbours (NNN)

• m: Strength of the staggered potential

• t : Strength of the complex NNN hopping

• ': Phase of the complex NNN hopping

• �i D ˙1: Sublattice-dependent sign (see sketch above)

• �ij D ˙1 and �ij D ��j i : Direction-dependent sign
It is �ij D C1 (�ij D �1) if the arrow points from i to j (j to i) in the sketch above.

Notes:

• This is a two-band model because of the two sites in each unit cell of the honeycomb lattice,
i.e., the fermions are spinless. (This is in contrast to the QWZmodel where the two bands
described internal spin degrees of freedom.)

• Despite the complex hopping, there is no net magnetic flux through the plaquettes of the
honeycomb model, ˆtot D 0, hence no magnetic unit cell is needed (cf. the ← Hofstadter
model).
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• You can think of the complex hoppings arising from a local magnetic field “curled up” in
each plaquette (maybe due to local magnetic moments in the material):

Note that other equivalent gauges (= distribution of complex hopping phases) are possible.
For instance, one can“concentrate” the accumulated phase on the central third of the NNN
hopping trajectories so that the outer (orange) triangles do not carry any flux and the blue
triangles cancel the flux through the yellow hexagon.

• The staggered potential breaks → sublattice symmetry (SLS, Section 4.1) but not ← time-reversal
symmetry (TRS, Section 2.1.2), whereas the complex NNN hopping breaks SLS and TRS.
Breaking SLS and/or TRS is sufficient to open a gap at the Dirac points, but only breaking of
TRS can result in bands with non-zero Chern number.

3 | Momentum space representation of HH:

We want to understand the physics of Eq. (2.51) in momentum space:

i | Brillouin zone:

Honeycomb lattice = Hexagonal/Triangular lattice + 2-atom basis

• Hexagonal lattice ! Brillouin zone

• 2-atom basis ! 2 bands

Basis vectors of the Hexagonal lattice:

a1 D
1

2

�p
3; 1

�T
and a2 D

1

2

�p
3;�1

�T
(2.52)

! Reciprocal lattice (= Hexagonal lattice):

b1 D 2�
�

1p
3
; 1
�T

and b2 D 2�
�

1p
3
;�1

�T
(2.53)

The ↓ reciprocal lattice is defined by vectors b that satisfy b � a 2 2�Z for a 2 Za1 C Za2

some lattice vector of the original lattice. The vectors bi above are a basis of this reciprocal
lattice.
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! Brillouin zone =Wigner-Seitz cell of the reciprocal lattice:
(= rotated Honeycomb plaquette)

Note that the BZ obtained from the Wigner-Seitz cell is a torus T 2 even though this is
not obvious from its shape (the BZ of every 2D periodic system is a torus as it is just the
parallelogram spanned by the reciprocal basis bi with opposite edges identified):

(Edges with the same arrow type are identified along the direction indicated by the arrow.)

The last diagram is known as ↑ fundamental polygon of the torus.

ii | Bloch Hamiltonian:

The two sublattice degrees of freedom per unit cell lead to a 2 � 2 Bloch Hamiltonian

HH.k/ D ".k/1C Ed.k/ � E� with

dx $ cos.ka1/C cos.ka2/C 1 (2.54a)

dy $ sin.ka1/C sin.ka2/ (2.54b)

d´ $ mC 2t sin.'/ Œsin.ka1/ � sin.ka2/ � sin.k.a1 � a2//� (2.54c)

".k/$ 2t cos.'/ Œcos.ka1/C cos.ka2/C cos.k.a1 � a2//� (2.54d)

As ".k/ has no effect on the gap and the Chern number, we set it the following to zero.

The above Bloch Hamiltonian follows straightforwardly from the Hamiltonian Eq. (2.51)
together with the sketches above (for the sign conventions) and the Fourier transform

cx;r D
1

p
L1L2

X
k2T 2

e�ikr
Qcx;k and Qcx;k D

1
p
L1L2

X
r2L

eikrcx;r (2.55)

of the fermion modes on the sublattices x D A;B with L D a1ZL1
C a2ZL2

the (periodic)
lattice and T 2 the Brillouin zone. It is then

OHH D

X
k2T 2

‰
�
k
HH.k/‰k (2.56)

with‰k D . QcA;k; QcB;k/
T .
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iii | Gap can only close at the corners of the BZ (check this form D 0 and t D 0):

K $
2�

3

�p
3; 1

�
and K 0 $

2�

3

�p
3;�1

�
(2.57)

Form D 0 and t D 0 the Hamiltonian Eq. (2.51) describes the ↓ semimetal ↓ Graphene with
two Dirac cones where the two bands touch.

iv | ! Dirac Hamiltonians: (Here i; j run only over 1; 2: �x and �y)

HH.K C k/ $ kihij�
j

C

h´‚ …„ ƒ
Œm � 3

p
3t sin.'/� �´

C O.k2/ (2.58a)

with h D

p
3

2

�
0 �1

1 0

�

HH.K
0
C k/ $ kih

0
ij�

j
C

h0
´‚ …„ ƒ

ŒmC 3
p
3t sin.'/� �´

C O.k2/ (2.58b)

with h0
D

p
3

2

�
0 �1

�1 0

�
We will use these two Dirac Hamiltonians to derive conditions when the gap closes (= a
phase transition occurs) and to compute the Chern numbers of the bands using the tricks
developed in Section 2.1.3.

4 | Gap closings:

We start by identifying the parameters where the gap closes to pin down the phase transitions:

@K W h´
Š

D 0 ,
m

3
p
3t

D C sin.'/ (2.59a)

@K 0
W h0

´
Š

D 0 ,
m

3
p
3t

D � sin.'/ (2.59b)

! Preliminiary phase diagram:

Eq. (2.59) suggests to use the ratio m

3
p

3t
of staggering strengthm and NNN hopping strength t as

an independent parameter:

There are 4 different parameter regimes that are separated by lines where the gap closes (note that
the two points ' D ˙� are identified). To identify the phases, we have to compute the Chern
number (of the lower band) in all 4 areas…
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5 | To do this, we need the following generalized expression for the Chern number of a Dirac Hamilto-
nian (cf. Section 2.1.3 and our analysis of the QWZmodel in Section 2.2):

H.k/ D

2X
i;j D1

kihij�
j

C h´ �
´

) C D �
sign.h´/ sign.det h/

2
(2.60)

Proof: → Problemset 5

Eqs. (2.58) and (2.60) !

CK D �
1

2
signŒm � 3

p
3t sin.'/� ; (2.61a)

CK 0 D C
1

2
signŒmC 3

p
3t sin.'/� : (2.61b)

The different sign for CK 0 is due to det h0 D �1.

With these preparations we can finally characterize the four gapped phases…

6 | Phases:

We use the same approach as for the QWZmodel in Section 2.2.

• m ! C1:

Ed.k/
2.54
� mEe´ ! Trivial phase with C D 0 (2.62)

• m ! �1:

Ed.k/
2.54
� mEe´ ! Trivial phase with C D 0 (2.63)

• 0 < ' < � and change parameters as follows:

m > 3
p
3t sin.'/„ ƒ‚ …

A

7! m < 3
p
3t sin.'/„ ƒ‚ …

B

(2.64)

This means we cross a phase boundary where the gap closes at K !

C D 0C CK .B/ � CK .A/
2.61a
D Œ�1=2 � .�1/� � Œ�1=2 � .C1/� D C1 (2.65)

! Topological phase (I)

• �� < ' < 0 and change parameters as follows: [note that sin.'/ < 0]

m > �3
p
3t sin.'/„ ƒ‚ …

A

7! m < �3
p
3t sin.'/„ ƒ‚ …

B

(2.66)

This means we cross a phase boundary where the gap closes at K 0 !

C D 0C CK 0.B/ � CK 0.A/
2.61b
D ŒC1=2 � .�1/� � ŒC1=2 � .C1/� D �1 (2.67)

! Topological phase (II)
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! Phase diagram:

Thus in total ther are three different phases, one trivial (C D 0) and two topological (C D ˙1).
Note that just as for theQWZmodel, the two trivial regions withC D 0 are continuously connected
without closing the gap, i.e., they are the same phase.

! 2 � Topological phases + Trivial phase

7 | Time-reversal symmetry:

Finally, let us check when the model becomes time-reversal symmetric.

^ QT0 D K & Eq. (2.34) (assume t ¤ 0) !

dx.k/
‹
D dx.�k/ X (2.68a)

dy.k/
‹
D �dy.�k/ X (2.68b)

d´.k/
‹
D d´.�k/ X for ' D 0; � mod 2� 7 otherwise (2.68c)

The spin-1
2
TRS representation QT 1

2
D �yK is always broken, irrespective of the parameter '.

! C D 0 for ' D 0; � mod 2� (i.e., for real NNN hopping)

¡! Note that when TRS is broken for ' ¤ 0; � mod 2� , it is only possible that C ¤ 0; the phase
diagram above demonstrate that TRS breaking not sufficient.

2.4. ‡ Experiments

• In 2010 it was predicted that the QAHE could be observed in certain solid state systems [104],
namely magnetic → topological insulators.

• These predictionswere experimentally confirmed in 2013 [105] and further explored in the following
years [106, 107].

• The Haldane model on the honeycomb lattice was artifically realized in a quantum simulator based
on ultracold fermions in 2014 [108].

• Much later, in 2023, a quantum simulation with ultracold fermions of the Qi-Wu-Zhang model was
reported [109].
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↓ Lecture 11 [22.05.25]

3. Topological Bands with Time-Reversal
Symmetry: The Topological Insulator

This section is based on various sources. A detailed account can be found in Bernevig’s textbook [1].
However, also the original papers byKane andMele [110,111] andFu andKane [97,112] are accessible
and worthwhile to read. The concept of vector bundles is discussed byCarpentier [113, 114] from a
physicists perspective; a more mathematical account is given byWehefritz-Kaufmann [115]. The
mathematical foundations underlying topological band theory (in particular the concepts of vector bundles
and their characterization) are covered in the textbooks byNash and Sen [116] andNakahara [12].

We seek for models with the following properties:

• Lattice model

• Band insulator

• Time-reversal symmetric (!)

• Topological band structure (!)
¡! We do not call for Chern bands as we known that this is impossible without breaking time-reversal
symmetry. So we need to look for another topological invariant…

Before we proceed, let us fix the nomenclature:

⁂ Definition: Topological insulator

Topological insulator (TI) WD

8̂̂̂<̂
ˆ̂:

Lattice model
Band insulator
Topological band structure
Time-reversal symmetric

(3.1)

Prototype: Kane-Mele model

With this definition, the question we want to answer is:

Are there topological insulators?

The term“topological insulator” is not used consistently in the literature. In particular, the above definition
is only one of at least three:

• Sometimes “TI” refers specifically to the Kane-Mele model. This is usually the case when people
talk about the topological insulator.
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• Sometimes “TI” is used to denote the class of gapped free fermion theories with time-reversal
symmetry, particle number conservation (to distinguish them from superconductors, → later) and
topological bands. This is essentially our definition above.

• Sometimes “TI” refers to arbitrary band insulators with topological bands (then including also
Chern insulators). This is how the term is used when referring to the class of topological insulators
& superconductors. I.e., there the term“insulator” distinguishes models from“superconductors”
(which violate particle number conservation) without referring to time-reversal symmetry.

So be aware of this when you study other sources.

3.1. Construction of the Kane-Mele model

1 | Starting point: ^ Low-energy theory of ← graphene:

Recall that this is just the ← Haldane model form D 0 D t [Eq. (2.58)]:

H.K C k/ D �

p
3

2
.kx�

y
� ky�

x/ (3.2a)

H.K 0
C k/ D �

p
3

2
.kx�

y
C ky�

x/ (3.2b)

To translate into the conventions used in the original papers, we rotate in momentum space by �=2
so that kx 7! ky and ky 7! �kx :

H.k/ WD H.K C k/ D �

p
3

2
.kx�

x
C ky�

y/ (3.3a)

H 0.k/ WD H.K 0
C k/ D �

p
3

2
.�kx�

x
C ky�

y/ (3.3b)

2 | The low-energy physics is determined by momentum modes in the vicinity of K and K 0. We can
therefore combine the two Bloch Hamiltonians by a direct sum (corresponding to the direct sum of
low-energy single-particle momentum modes): !

QH0.k/ WD H.k/˚H 0.k/ (3.4a)

D vF

�
kx�

x C ky�
y 0

0 �kx�
x C ky�

y

�
(3.4b)

D vF .�
x

˝ �´ kx C �y
˝ 1 ky/ (3.4c)

� vF .�
x�´kx C �yky/ (3.4d)

• � i : band DOF (mixes modes of upper/lower bands)

• � i : valley DOF (mixes modes between valleys K/K 0)

• vF D �
p
3=2: Fermi velocity

3 | Time-reversal:

Note that under time-reversal we have K C k 7! �K � k D K 0 � k so that in the low-energy
description time-reversal flips the valley DOF; this can be achieved by �x :

QT0 WD 1� ˝ �x K with QT 2
0 D C1 (3.5)

! QT0
QH0.k/ QT �1

0 D QH0.�k/

The time-reversal operator of spinless graphene is simply T0 D K (all terms in the Hamiltonian are
real). The �x in Eq. (3.5) is a consequence of our low-energy description at the two Dirac points.
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4 | Add Spin-1
2
: Pauli matrices �i with i D x; y; ´

This gives us more possibilities to add gap-opening terms to QH0. It is also physically motivated:
electrons do have spin!

QH 1
2
.k/ WD vF .�

x
˝ 1� ˝ �´ kx C �y

˝ 1� ˝ 1� ky/ (3.6a)

� vF .�
x�´kx C �yky/ (3.6b)

! Bloch space H .k/ ' C2 ˝ C2 ˝ C2 ' C8

! Time-reversal:

QT 1
2

WD 1� ˝ �y
˝ �x K with QT 2

1
2

D �1 (3.7)

! QT 1
2

QH 1
2
.k/ QT �1

1
2

D QH 1
2
.�k/

Note that this model is perfectly spin-degnerate: we“copied” the 4-band model QH0 to represent
spin up and down, but didn’t add any coupling between the two copies yet!

5 | Goal: Open topological gap by adding terms to QH 1
2
.k/:

At this point it is unclear what we mean by a“topological gap” (→ below).

The rationale is to use the linearized Bloch Hamiltonian for this construction because it is simpler.
We can then later reconstruct a lattice model from the low-energy (= small momentum)Hamiltonian
as we did for the QWZ model. The 8 bands of QH 1

2
will therefore reduce again to 4 bands since the

valley Hilbert space C2 does not exist for a true lattice model.

i | Observation I: Must contain �´!

Because otherwise we only shift the position of the Dirac points:

QH.k/ D vF Œ�
x�´kx C �yky �C vF .ıx�

x�´
C ıy�

y/ (3.8a)

D vF Œ�
x�´.kx C ıx/C �y.ky C ıy/� (3.8b)

D H.K C ı„ƒ‚…
Kı

Ck/˚H.K 0
C ı„ ƒ‚ …

K 0
ı

Ck/ (3.8c)

with ı D .ıx ; ıy/
T . You can think of ıx and ıy as operators (products of Pauli matrices) that

do not contain any � i matrices. Then Eq. (3.8a) is the most general modification without
using �´. The argument that the cones are shifted but not gapped then applies within the
eigenspaces of the operators ıx and ıy .

ii | We know already the Trivial mass term: [cf. Eq. (2.58) for t D 0]

ı QHm.k/ D m�´ (3.9)

!

3 Time-reversal invariant [since QT 1
2
ı QHm.k/ QT �1

1
2

D ı QHm.�k/]

3 Opens a gap of 2m

7 But: Bands are topologically trivial /

They are “topologically trivial” because their Chern number vanishes. However, below
we will derive a new topological invariant distinct from the Chern number, so that this
statement seems short-sighted. The true argument is therefore that form ! 1 the
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system is clearly a trivial band insulator where one sublattice is empty and the other
completely filled; this phase is “trivial” in the original sense of being a product state.
Then, no matter which topological invariant we cook up, to comply with our physically
motivated notion of “trivial”, it must vanish in the gapped phase dominated by ı QHm.

! So we should look for other gap opening terms…

iii | We also know the Haldane mass term:

Eq. (2.58)
'D��=2
������!

mD0
ı QHH.k/ D �´�´ 3

p
3 t (3.10)

Because of the valley encoding, we can now combine both Hamiltonians in Eq. (2.58) into a
single expression with �´.

! QHH WD QH 1
2

C ı QHm C ı QHH = two independent copies of the Haldane model
(one for spin up, one for spin down)

! Not TRI:

QT 1
2
ı QHH.k/ QT �1

1
2

¤ ı QHH.�k/ / (3.11)

Of course you do not have to check this. Since the two copies of the Haldane model are
independent, we can consider them separately. But each allows for bandswith non-zeroChern
numbers (this was the point!). But then the model must break TRS because we know that
this is a necessary condition for non-zero Chern numbers in the first place (← Section 2.1.2).

iv | Observation II: Must contain spin-coupling that anticommutes with QT 1
2
!

!

ı QHKM.k/ WD �SO �
´

˝ 1� ˝ �´
/ ı QHH ! Not TRI 7 (3.12a)

ı QHKM.k/ WD �SO �
´

˝ �fx;y;´g
˝ 1� ! Not TRI 7 (3.12b)

ı QHKM.k/ WD �SO �
´

˝ �fx;y;´g
˝ �´

! TRI 3 (3.12c)

! ⁂ Kane-Mele mass term

• Couples “orbital” DOFs (�´) with spin DOFs (�´)

! Discrete version of ↓ Spin-orbit coupling (SO)

• ı QHKM.k/ is just Haldane’s TRS breaking term �´�´ 3
p
3t sin.'/ augmented by spin-

orbit coupling to “recover” time-reversal symmetry.

• The choice of�´ is arbitrary since all�i anticommute with QT 1
2
. It is just conventional to

think in the ´-basis for spin (i.e., spin “up” and“down” now have conjugate imaginary
hopping phases). Note also that on its own, �´ is interchangeable with the other Pauli
matrices by permutations (or spin rotations) without changing the spin-algebra.

6 | Kane-Mele model:

Low-energy description:

QH 0
KM.k/ WD QH 1

2
.k/C ı QHm.k/C ı QHKM.k/ (3.13)
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ı
�! Reconstruction of the Full lattice model:

OH 0
KM D

, QH 1
2

.k/‚ …„ ƒX
hi;j i;˛

c
�
i˛cj˛„ ƒ‚ …

Spinful graphene

C

, ı QHm.k/‚ …„ ƒ
m
X
i;˛

�ic
�
i˛ci˛„ ƒ‚ …

Staggered potential

C

, ı QHKM.k/‚ …„ ƒ
�SO

X
hhi;j ii;˛;ˇ

i�j i c
�
i˛�

´
˛ˇ
cjˇ„ ƒ‚ …

Complex NNN hopping with SO coupling

(3.14)

c
�
i˛: Creates fermion with spin ˛ 2 f";#g on site i

• Note that the phase in the Kane-Mele term is the phase ei�ij ' of the Haldane term for
' D ��=2.

• If you don’t believe this, you can retrace our path to derive the Dirac Hamiltonian for the
Haldanemodel again for the Kane-Melemodel to derive QH 0

KM.k/ in Eq. (3.13) fromEq. (3.14).

• Themodel (3.14) (together with the Rashba term→ below) was introduced byC. L. Kane and
E. J. Mele in 2005 [110, 111] under the name Quantum spin Hall effect as a time-symmetric
generalization of Haldane’s ← Chern insulator discussed in Chapter 2 (the designation“Quan-
tum spin Hall effect” is a bit misleading and subtle, see comments at the end of Section 3.4).

7 | Observation III: OH 0
KM does not mix spin:h

OH 0
KM; N˛

i
D 0 with N˛ WD

X
i

c
�
i˛ci˛ (3.15)

! OH 0
KM = two decoupled copies of the Haldane model with opposite complex phases

Note that this rather trivial construction already fixed the breaking of time-reversal symmetry
because the two copies map onto each other under time reversal. However…

! Not generic

Mixing of up and down spins can happen, e.g., by applying an electric field perpendicular to
the plane. The conservation of spin should not be necessary for the system to be time-reversal
symmetric. That is, the modelH 0

KM is a bit too symmetric…

! Add term that breaks the unitary symmetry generated by N˛ (but preserves TRS)

8 | Rashba term:

There is indeed another SO coupling term that does not break TRS known as
⁂ Rashba spin-orbit coupling:

ı QHR.k/ WD �R

�
�x�y�´

� �y�x
�

(3.16)

! QT 1
2
ı QHR.k/ QT �1

1
2

D ı QHR.�k/

• Does not open a gap (missing �´)…

• …but modifies the gap generated by the Kane-Mele term.

• Breaks spin conservation (the " and # sectors no longer decouple)

This type of SO coupling in 2D systems was first studied by Y. A. Bychkov and E. I. Rashba
in 1984 [117], i.e., long before the discovery of the Kane-Mele model.
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ı
�! Wemake the KMmodel more generic by adding the Rashba term:

OHKM WD OH 0
KM C

,ı QHR.k/‚ …„ ƒ
�R

X
hi;j i;˛;ˇ

c
�
i˛R

˛ˇ
ij cjˇ„ ƒ‚ …

NN hopping with Rashba SO coupling

(3.17)

with

R
˛ˇ
ij $ i

h
. E� � Edij / � Oe´

i
˛ˇ

(3.18)

Edij : vector from site i to site j (in the x-y-pane)

E� D .�x ; �y ; �´/: vector of spin matrices

Oe´: unit vector in ´-direction

• Note that . E� � Edij /´ D �xd
y
ij � �ydx

ij is a Hermitian 2 � 2matrix.

• Because of the �x and �y in the Rashba term, it is now Œ OHKM; N˛� ¤ 0 so that OHKM can no
longer be interpreted as a sum of two independent Haldane models.

• The direction-dependent phase and spin-coupling of the Kane-Mele term can be encoded in a
similar form (for the fixed hopping phase ' D ��=2):

H
˛ˇ
ij WD e�ij i'�´

˛ˇ
D �i�ij�

´
˛ˇ

$ i 2
p
3
h
. Edik � Edkj / � E�

i
˛ˇ

(3.19)

where k denotes the site that is skipped when jumping from i to the next-nearest neighbour j .

• You can think of the Rashba term being induced by an electric field perpendicular to the 2D
system. Then electrons hopping from one site to another experience an in-plane magnetic field
(remember you course on ↓ electrodynamics) which couples to the magnetic moment induced
by the spin via �x- and �y-components. The direction of the magnetic field depends on the
direction the electron hops, which explains the directional dependence in Eq. (3.18).

3.2. Phase diagram

We are now ready to sketch the phase diagram of OHKM by identifying the gapped phases in parameter space
and the gapless phase transitions that separate them:

1 | Gap closings:

We have three parameters (in units of the graphene hopping strength). For simplicity, we fix the
Kane-Mele term �SO and plot the gap closings in the �R-m-plane:
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^ 0 < �SO D const � 1:

• The gapless values on them-axis follow directly from our discussion of the Haldane model
with ' D ��=2.

• Note that there are two gapless lines emanating from region B along the �R-axis. These
divide region A, which must be the trivial phase (because it contains the limitm ! ˙1 in
which the system is clearly in a product state). As before, one can connect these two halves
of region A without crossing the gapless line on the R-axis by extending the Hamiltonian
appropriately, i.e., there is only one (trivial) phase A.

• To derive the full plot, you must Fourier transform OHKM on a periodic lattice to derive the
4 � 4-Bloch Hamiltonian,

QHKM.k/ D

5X
iD1

di .k/�i C

5X
i<j D1

dij .k/�ij (3.20)

which is generated by (at most) 15 terms which take the place of the three-component Bloch
vector Ed.k/ for models with two bands. Recall that n�nHamiltonians (with vanishing trace)
generate unitaries in the group SU.n/ which has n2 � 1 generators; e.g., 3 Pauli matrices
for n D 2 or 15 �-matrices for n D 4. The generators for n D 4 satisfy f�i ; �j g D 2ıij and
�ij D 1=2i Œ�i ; �j � with i; j 2 f1; : : : ; 5g. See [111] for the expressions for di and dij .

2 | ^ �R D 0 (m-axis in the above plot)

! Spin-sectors decouple

! Chern number C˛ of spin-polarized sub-bands well-defined !

I�
WD

C" � C#

2
mod 2 D

(
1 topologial phase of Haldane model(s)

0 trivial phase of Haldane model(s)
(3.21)

Note that the sum C" C C# D 0 of the filled bands is zero everywhere because of TRS!

! Suggests that Phase B is in some sense topological. (Phase A is a trivial insulator.)

! Not characterized by I� since I � requires spin-conservation, whereas the phase is stable
against perturbations that violate spin-conservation (like the Rashba term).

! What characterizes Phase B?
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3.3. Vorticity of the Pfaffian and the Z2-Index

So what is the label that distinguishes the two phases of the Kane-Mele model?
We need a new topological index that replaces the Chern number…

3 | ^ TRI system with QT 2
U D �1 ! Band crossings at TRIMs

TRIM � ⁂ Time-reversal invariant momentum

K �
2 T 2

W TRIM , �K �
D K �

C G ; G W reciprocal lattice vector (3.22)

! Generic bandstructure of TRI System in 1D with QT 2
U D �1:

^ Gapped system ! Even number 2n of filled bands

• Note that time-reversal symmetry (irrespective of T 2
U D ˙1) implies thek $ �k symmetry

of the spectrum [← Eq. (2.33)]. However, this does not imply a degeneracy at the TRIMs!
(Think of free fermions on a lattice.)

• If T 2
U D �1 , QT 2

U D �1, ← Kramers theorem (← Section 2.1.2, → Problemset 6) applies to
the single-particle Hamiltonian, TUHT

�1
U D H , and demands a two-fold degeneracy for

every eigenenergy. At the TRIMs, this necessitates a crossing band; hence all bands come in
pairs!

• For the Bloch HamiltoniansH.k/, Kramers theorem does not apply in general, since TRI
requires QTUH.k/ QT �1

U D H.�k/ which is not a symmetry of H.k/. Only at the TRIMs
we have QTUH.K

�/ QT �1
U D H.�K �/ D H.K � C G / D H.K �/ so that Kramers theorem

implies a two-fold degeneracy in the Bloch space of a TRIM K �. This is another perspective
on the band crossings at the TRIMs.

• Note that the Kamers pairs of bands (I and II) can be degenerate everywhere in the BZ (for
the Kane-Mele model they are perfectly degenerate for �R D 0 D m). TRI only requires
this degeneracy at the TRIMs but does not exlude it elsewhere.

In particular, there are…
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Four TRIMs for the hexagonal lattice:

4 | ^ Matrix of QTU on occupied Bloch space H filled
k

WD span fjui .k/igiD1:::2n

Here, i; j run over the occupied bands. For the 4-band Kane-Mele model, this means i; j 2 f1; 2g

which correspond to the filled lower bands of the spin-up and -down copy of the Haldane model
(for �R D 0).

Mij .k/ WD hui .k/j QTU juj .k/i (3.23a)

D hui .k/jUu
�
j .k/i (3.23b)

D �hU �ui .k/ju
�
j .k/i (3.23c)

D �huj .k/jUu
�
i .k/i (3.23d)

D �huj .k/j QTU jui .k/i (3.23e)

$ �MT
ij .k/ (3.23f )

Here we used U � D .U �/T and U T D �U since QT 2
U D QT 2

1
2

D �1 with QT 1
2

D 1� ˝ �y K .

• The matrixM.k/ is Gauge-dependent (= depends on chosen basis of H filled
k

)

• For every k 2 T 2,M.k/ is a Skew-symmetric matrix of even dimensions

(Remember that TRI demands an even number of filled bands.)
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↓ Lecture 12 [23.05.25]

5 | ! ^ Pfaffian:

Definition: ForM a skew-symmetric 2n � 2n-matrix, the Pfaffian is defined as

Pf ŒM � WD
1

2nnŠ

X
�2S2n

.�1/�
nY

iD1

M�.2i�1/;�.2i/ (3.24)

Cf. the ↓ Leibniz formula for determinants:

det.M/ D

X
�2S2n

.�1/�
2nY

iD1

Mi�.i/ (3.25)

ı
�! It follows:

• .Pf ŒM �/2 D det.M/, i.e., the Pfaffian contains the same information as the determinant
(but with an additional sign that is lost when considering the determinant).

• Pf
�
BABT

�
D det.B/Pf ŒA� for an arbitrary 2n � 2n-matrix B

• For skew-symmetric matrices of even dimension, the Pfaffian is a“more natural” object than
the determinant (it contains at least as much information!).

This motivates the definition of the following function:

P W T 2
! C P.k/ WD Pf ŒM.k/� (3.26)

Kane-Mele model: P.k/ D M12.k/ D hu1.k/j QTU ju2.k/i

! P.k/ is a complex-valued function on the BZ that depends (continuously) on the Hamiltonian.

The idea is now to identify topologically robust properties of this function to distinguish the two
phases of the Kane-Mele model…

6 | Properties of P.k/:

Next, we carefully study the properties of P.k/ to lay the foundations for a new topological index
defined → below:

i | Not gauge invariant: ^ U 2 U.2n/ and ju0
i .k/i WD Uij juj .k/i

This gauge transformation mixes the 2n filled bands!

w.l.o.g. U D ei� QU with QU 2 SU.2n/ !

P 0.k/ D Pf
��

hu0
i .k/j

QTU ju0
j .k/i

�
ij

�
(3.27a)

D Pf
��
U �

i i 0hui 0.k/j QTU juj 0.k/iU �
jj 0

�
ij

�
(3.27b)

D Pf
h
U �

�
hui 0.k/j QTU juj 0.k/i

�
i 0j 0 .U

�/T
i

(3.27c)

D det.U �/P.k/ (3.27d)

D e�i2n�P.k/ (3.27e)

Here we used that det. QU/ D 1.

! jP.k/j is gauge invariant
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Note: We can consider even unitary transformations between filled bands (for a fixed k)
although these states are not energetically degenerate (strictly speaking, they do not even
have to be energy eigenstates to begin with, → below) because such transformations do not
alter the many-body ground state (namely the Fermi sea or the Slater determinant):

j‰0
0i D

Y
k

Y
i

c
0�
k;i j0i D

Y
k

Y
i

Uij c
�
k;j j0i (3.28a)

$
Y
k

det.U /
Y

i

c
�
k;i j0i D ei�

Y
k

Y
i

c
�
k;i j0i D ei�

j‰0i : (3.28b)

Here, c�
k;i creates a fermion inmode jui .k/i and ei� is some global (and therefore unphysical)

phase determined by (powers of ) det.U /. The determinant arises due to the anticommutation
relations fc

�
k;i ; c

�
k;j g D 0; have a look at the concepts of ↑ alternating multilinear forms and

the ↑ exterior algebra if so don’t believe this (or prove it by hand).

ii | Time-reversal symmetry (TRS/TRI)

! Chern numbers of “valence bundle” H filled
k

D span fjui .k/igiD1:::2n vanish

! H filled
k

= ↑ Trivial vector bundle

! 9 Continuous basis fjei .k/igiD1:::2n of H filled
k

on T 2

It is jei .k/i D Uij .k/juj .k/i a (potentially discontinuous) gauge transformation.

Remember that we showed in Section 1.3.1 (for the speciall case of a single band) that a
non-zero Chern number implies that a globally continuous Bloch basis does not exists. Here
we use the inverse claim (without proof ).

! P.k/ continuous on T 2 if defined by fjei .k/igiD1:::2n

This follows from the fact that the Chern number(s) of the filled Bands (mathematically
speaking, the filled ↑ Bloch bundle or ↑ valence bundle) vanish. Thus there is no obstruction in
choosing a globally defined, continuous basis fjei .k/igiD1:::2n of the filled band fiber H filled

k
at

every k. Mathematically, this means that the Bloch bundle of filled bands can be ↑ trivialized.
Because there is a continuous basis choice fjei .k/igiD1:::2n for the filled bands, the matrix
of QTU , and subsequently the Pfaffian P.k/, are continuous on T 2 if defined with this basis
choice.

Note that in general the continuous basis fjei .k/igiD1:::2n is not necessarily an eigenbasis of
the Bloch Hamiltonian! This is why we changed the notation from ui .k/ to ei .k/; in the fol-
lowing, fjei .k/igiD1:::2n always denotes a globally continuous basis whereas fjui .k/igiD1:::2n

is a (potentially discontinuous) eigenbasis of the Bloch Hamiltonian.

iii | ^ Two special subspaces of Bloch states:

• H filled
k

is ⁂ even W, QTU H filled
k

D H filled
k

This means that QTU jui .k/i D Mij juj .k/i with a unitary matrixM ¤ 0.

! jP.k/j D jPf ŒM.k/� j D
p

j detM.k/j D 1

To show thatM.k/ is unitary, evaluate .M �M/ij using the definition in Eq. (3.23) and
use that the projectorP

Hfilled
k

D
P2n

kD1 juk.k/ihuk.k/j acts as the idenity on QTU juj .k/i

since QTU H filled
k

D H filled
k

by assumption. Remember that QTU D UK with U �U D 1

and use that hu�
i .k/ju

�
j .k/i D huj .k/jui .k/i D ıij .

• H filled
k

is ⁂ odd W, QTU H filled
k

? H filled
k

This means that huj .k/j QTU jui .k/i D 0 D Mij . Remember that i runs only over filled
bands whereas QTU can mix the whole fiber Hk D H filled

k
˚ H

empty
k

.
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– ¡! Let jui .k/i be an eigenstate of H.k/ in H filled
k

and think of it as a vector in
CN ' Hk D H filled

k
˚ H

empty
k

, where N is the total number of bands. Then
time-reversal symmetry implies that QTU jui .k/i is an eigenvector with the same
eigenvalue ofH.�k/ [recall Eq. (2.33)]. But this is not necessarily the same matrix
asH.k/ (except for k a TRIM)! Hence QTU jui .k/i can be in the linear subspace
H

empty
k

that corresponds to the conduction band at k, and therefore orthogonal to
all vectors in H filled

k
.

– Strictly speaking, here we compare vectors in different “fibers” H filled
k

and H filled
�k

.
To do so, we (silently) assume a ↑ trivialization T 2 � CN of the complete ↑ Bloch
bundle with Hk D H filled

k
˚ H

empty
k

' CN (↑ Refs. [113, 114] for more details).

! jP.k/j D jPf ŒM.k/� j D 0

These are two special cases; H filled
k

can also be neither even nor odd!

iv | Observation: K� TRIM ! H filled
K� is even since

jui .K
�/i 2 H filled

K�

QTU H.K�/ QT �1
U DH.K�/

HHHHHHHHHHHHHHH) QTU jui .K
�/i 2 H filled

K� (3.29)

Œ QTU ;H.K
�/� D 0means that QTU can only mix states with the same eigenenergy. In particular,

a mixing between valence and conduction bands cannot occur, so that QTU jui .K
�/i 2 H filled

K�

if jui .K
�/i 2 H filled

K� . Note that this argument breaks down at a gapless point!

! jP.K�/j D 1 at all TRIMs K �

v | Effective Brillouin Zones:

Remember:

TRI , QTUH.k/ QT �1
U D H.�k/ (3.30)

! DefiningH.k/ on half the BZ is sufficient!
The other half can then be reconstructed via Eq. (3.30).

! Define an ⁂ Effective Brillouin Zone (EBZ) as any subset of T 2 that does not contain
both k and �k (except for the boundaries which connect pairs of TRIMs).

Example on the hexagonal lattice:

• The EBZ has the topology of a cylinder (and not a torus).

• Note that the choice of an EBZ is not unique [113].

• The concept of anEBZwas originally introduced byMoore andBalents in 2007 [100].
See also Ref. [113] for an accessible introduction.

The concept of an EBZ will become important → below.
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vi | Consequences for P.k/ from TRI:
(Remember the TRI band structure with Kramers pairs above!)

QTUH.k/ QT �1
U D H.�k/ ) QTU H filled

k D H filled
�k (3.31a)

) jei .�k/i D w�
ij .k/

QTU jej .k/i (3.31b)

wij .k/ WD hei .�k/j QTU jej .k/i: unitary ⁂ Sewing matrix

jei .k/i denotes the globally continuous basis of the valence bundle H filled
k

defined ← above.

The sewing matrix was originally introduced by Fu and Kane in 2006 [112]. See also
Fruchart andCarpentier [113] and → Problemset 7.

! With this we can evaluate the Pfaffian at �k:

P.�k/ D Pf ŒM.�k/� (3.32a)

D Pf
h�

hei .�k/j QTU jej .�k/i
�
ij

i
(3.32b)

D Pf
h�
wi i 0.k/ h QTU ei 0.k/j QTU j QTU ej 0.k/iwjj 0.k/

�
ij

i
(3.32c)

D .�1/n Pf
h�
wjj 0.k/ hej 0.k/j QTU jei 0.k/i�wi i 0.k/

�
ij

i
(3.32d)

$ .�1/n Pf
h
w.k/M �.k/wT .k/

i
(3.32e)

D .�1/n detŒw.k/� ŒP.k/�� (3.32f )

Here we used QT 2
U D �1, Pf Œ�A� D �n Pf ŒA� and that QTU is antiunitary.

! Two conclusions:

• P.k0/ D 0 , P.�k0/ D 0

Note thatw�.k/w.k/ D 1 so that detŒw.k/� ¤ 0 for all k 2 T 2.

• The ⁂ vorticities � around k0 and �k0 have opposite signs:

�Œk0� WD
1

2�i

I
@k0

r logŒP.k/� � dk D ��Œ�k0� 2 Z (3.33)

@k0: loop around k0

– The vorticity �Œk0�measures the complex phase accumulated when travelling around
the zero of P.k/ at k0. SinceP.k/ is continuous, this can only be integer multiples
of 2� .

– Sincew.k/ is continuous and unitary, the vorticity of detŒw.k/� ¤ 0must vanish
everywhere, so that the vorticity of the expression in Eq. (3.32f) is completely
determined by ŒP.k/�� [which has the negative vorticity of P.k/].

– Let P.k/ D jP.k/jei argP.k/ so that logŒP.k/� D ln jP.k/j C i argP.k/.

Then we have

1

2�i

I
@k0

r logŒP.k/� � dk (3.34a)

D
1

2�i

I
@k0

r ln jP.k/j � dk„ ƒ‚ …
D0

C
1

2�

I
@k0

r argP.k/ � dk„ ƒ‚ …
22�Z

(3.34b)
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where we used that jP.k/j ¤ 0 is continuous everywhere along the contour @k0; in
particular, the argument argP.k/ can only change by multiples of 2� . This shows
that the expression (3.33) measures the phase winding of P.k/ along the contour
@k0, i.e., its vorticity.

! Phase vortices of P.k/ on the BZ T 2 come in pairs of opposite vorticity

vii | Observation: Zeros of P.k/ with �Œk0� ¤ 0 are topologically stable

This is intuitively clear: If one makes the function non-zero at the vortex, it becomes discon-
tinuous at this point due to the winding phase. Furthermore, the winding phase cannot be
smoothly removed without discontinuous deformations of the function as well.

7 | If we combine all the above facts, we arrive at the following…

! Generic picture:

• Without additional symmetries, the zeros of jP.k/j occur at points in the BZ.
This is true for the Kane-Mele model ifm ¤ 0.

• With additional symmetries, the zeros can form lines that avoid the TRIMs.
In the Kane-Mele model, this happens form D 0, ↑ Ref. [111] and → below.

• Zeros with vanishing vorticity are not stable and therefore not “generic” but “fine-tuned.”

• On the TRIMs, jP.k/j is pinned to 1, so that zeros (vortices) cannot occupy these positions.

• In the following, we focus on the least symmetric (and thereforemost generic) case with point-
like zeros. Without loss of generality, we assume a vorticity of ˙1 per vortex (a vortex with
vorticity j�j > 1 can be continuously split into j�j vortices of vorticity ˙1). Furthermore,
we assume that all vortices in the EBZ have the same vorticity (vortices of opposite vorticity
in the EBZ can be pairwise annihilated).

8 | Two situations:

• ^ Even number of vortices in EBZ:

! All vortices can be continuously removed
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• ^ Odd number of vortices in EBZ:

– To remove the last vortex pair, the partners must meet at one of the TRIMs.

– But this is impossible because of TRS which demands jP.K �/j D 1 [← Eq. (3.29)].

! A single pair of vortices cannot be continuously removed

! The two situations are Topologically distinct (as long as TRS is not broken)

! Odd number of vortices = Topological phase protected by time-reversal symmetry

This is our first example of a true ← symmetry-protected topological (SPT) phase.

9 | This distinction is quantified by the ⁂ Topological/Pfaffian Z2 index …

I WD
1

2�i

I
@EBZ

r logŒP.k/� � dk mod 2 D
1

2�i

I
@EBZ
d logŒP.k/� mod 2 (3.35)

@EBZ: Closed path that encircles an EBZ

…which measures the parity of the total vorticity in half the Brillouin zone.

• The choice of a EZB is constrained by the vortices. It should be chosen such that the vortices
stay away from the boundary @EBZ. For example, see Ref. [111, Fig. 2].

• I 2 Z2 is gauge invariant because a gauge transformation that is continuous everywhere
cannot change the vorticity of P.k/ [← Eq. (3.27)].

• There is an alternative way to compute the topological Z2 index I by evaluating the ← sewing
matrix w.k/ at the TRIMs:

.�1/I
�
D

Y
K� TRIM

Pf Œw.K �/�p
detw.K �/

: (3.36)

This assumes that the sewing matrix wij .k/ D hei .�k/j QTU jej .k/i is calculated from a
globally continuous basis jei .k/i. You show the equivalence of Eq. (3.35) and Eq. (3.36)
on → Problemset 7. This alternative form of the Z2 index is important because it naturally
generalizes to three dimensions and paves the way to ↑ 3D topological insulators and ↑ weak
topological insulators [96].
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10 | Example: Kane-Mele model:

• In the color plots, the BZ is deformed to a square. The color denotes the phase (red = C1,
turquoise = �1) and the lightness the absolute value (black = 0) of the Pfaffian computed
from a family of global sections of the valence bundle.

• Note that in the topological phase (form ¤ 0) there is a single vortex in each EBZ and the
phase winds once around each vortex so that I D 1. For this result, it is crucial that the
Pfaffian is computed from a globally continuous basis fjei .k/igiD1:::2n (= a family of global
sections of the valence bundle that form a basis at every point), otherwise the vorticity can
be changed by integers (even if the Pfaffian is continuous!) and I cannot distinguish the
phases. Note that these global sections are typically not eigenstates of the BlochHamiltonian;
their existence, however, is guaranteed by time-reversal symmetry (because then all Chern
numbers of the rank-2 valence bundle vanish).

• Here you can download the Mathematica notebook that I used to create the plots above:

→Download Mathematica notebook

• The enhanced symmetry form D 0make the zeros form a line that circles the central TRIM
(and therefore cannot be contracted without breaking TRS). In this situation, the Pfaffian
can be gauged real (as already mentioned by Kane an Mele [111]). Continuously breaking the
“ring of zeros” is only possible if a pair of vortices is introduced that makes the phase wind
around the two islands of zeros that result from such a procedure.
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↓ Lecture 13 [30.05.25]

3.4. Edge modes

A particularly intriguing feature of phases with topological bands is the emergence of robust edge modes
(the analogs of the chiral edge modes we encountered in quantum Hall systems, ← Section 1.6):

11 | ^ OHKM on a cylinder:

The system is therefore periodic in y-direction but has boundaries in x-direction.

The type of boundary (“zigzag” vs. “armchair”) has no effect on the existence of the edge states
but the spectrum below looks different for armchair boundaries.

! Interpret strip as a 1D system with large, Lx-dependent unit cell

! Fourier transform OHKM only in y-direction

! 1D spectrum with O.Lx/ bands labeled by y-momentum ky

12 | Numerics ! Edge modes:

This figure is taken fromKane andMele’s original work [111].
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• Topological phase ! Gapless edge modes

– Robust (= no backscattering / gap opening) to TRS perturbations

– The four band crossings of the edge modes are protected for two different reasons:

* Black crossings: The crossing modes are localized on opposite edges of the strip.
Gapping them out is therefore exponentially suppressed with the width Lx of the
strip (gapped bulk!).

* Colored crossings: The crossing modes live on the same edge of the sample (with
opposite group velocity). Gapping them out is forbidden by time-reversal symmetry
as these crossings happen at a TRIM (ky D �) and are enforced by Kramers degen-
eracy. This is why the Kane-Mele topological insulator is an SPT phase: Disorder
that breaks TRS can hybridize these edge modes and destroy the topological phase.

– On each edge there is a right-propagating mode for one spin polarization and a left-
propagating mode for the opposite spin polarization (for �R D 0, if spin is conserved).

In the original plots above, it is actually �R D 0:05 ¤ 0 so that spin conservation is
broken. The breaking of spin-conservation is responsible for the ↓ avoided crossings that
fuse the edge modes into the bulk bands (for �R D 0 the edge modes would cross the
bulk modes, → Problemset 6).

– The edge modes are helical (not chiral) since the product of spin and momentum is
constant on each edge.

• Trivial phase ! No gapless edge modes

Details: → Problemset 6

Notes:

• The two“stalactite-stalagmite” pairs in the above spectrum correspond to the 1D projections
of the two (gapped)Dirac cones aroundK andK 0. The tips of these bulk bands are connected
by the edge modes.

• For �R D 0 you can extract the edge modes of the ← Haldane Chern insulator by just looking
at one of the two spin sectors (up or down, which determines the sign of the complex NNN
hopping phase). Thus in the topological phase, the Haldane model supports one (then chiral
[since spin does not exist]) edge mode on each boundary.

13 | Final Note on symmetries and names:

• As discussed, the KMmodel OHKM without Rashba SO coupling (�R D 0) can be thought
of as two uncoupled, time-reversed copies of Haldane’s Chern insulator. As such, the
model features a particle conservation symmetry in each of the two spin sectors, i.e., its total
symmetry isU.1/"�U.1/#. By defining charge nc D n"Cn# and spin ns D n"�n#, one can
reinterpret this symmetry as U.1/charge � U.1/spin, where total charge (particle) conservation
U.1/charge and total spin conservation U.1/spin hold separately. One can then introduce the
usual charge current Jc D J" C J# and the ⁂ spin current Js D .„=2e/

�
J" � J#

�
and ask

for the linear response of these quantities when an electric field is applied. This response
is quantified by the usual charge Hall conductivity �c

xy (previously �xy) and its analogue,
the ⁂ spin Hall conductivity � s

xy . Because the ground state of OHKM is given by two filled
Chern bands with opposite Chern numbers C D ˙1, the charge Hall conductivity vanishes
identically: �c

xy D 0 (this follows from our general discussion in Section 1.4.2). By contrast,
the spin Hall conductivity is non-zero and quantized at � s

xy D e=2� D 2 � .„=2e/ � e2=h

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE TOPOLOGICAL INSULATOR

111
PAGE

(because there are two counterpropagating edge modes with opposite spin, coming from the
two Chern bands with opposite Chern number). The phenomenon of a quantized spin Hall
conductivity (and vanishing charge Hall conductivity) is called ⁂ quantum spin Hall effect
(QSHE) and characterized by the combined symmetry U.1/charge � U.1/spin.

• It was a remarkable insight by Kane and Mele [111] that the two phases of the “Quantum
Spin Hall effect in Graphene” [110] remained topologically distinct (via the Pfaffian index)
even without spin conservation (�R ¤ 0) – time-reversal symmetry is sufficient! This phase,
protected by charge conservationU.1/charge and time-reversal symmetryZT

4 [recall that QT 2
U D

�1 is equivalent to T 2
U D .�1/

ONc , Section 2.1.2], and characterized by the Paffian Z2 index,
is the topological insulator (TI) phase. Since spin conservation U.1/spin is generally broken in
this phase, it is not characterized by a quantized spin Hall conductivity (= quantum spin Hall
effect). One can indeed check that adding either TRS breaking terms or superconducting
terms to the KMHamiltonian OHKM on a cylinder gaps out the edge modes, indicating that
the topological insulator is protected by TRS and charge conservation symmetry [94].

Thus, the topological insulator (TI) and the quantum spin Hall (QSH) phase are different symmetry-
protected topological phases, and the KM model happens to realize both for �R D 0 [35]. [Re-
member (Section 0.5) that the classification of SPT phases depends on our choice of protecting
symmetry!]

In the context of this (modern) terminology, the title of Kane and Mele’s original paper “Z2

Topological Order and the Quantum Spin Hall Effect” [111] is confusing for two reasons: First, the
paper is mostly about the topological insulator phase – and not the quantum spin Hall effect. The
authors event point this out explicitly: “The QSH phase is not generally characterized by a quantized
spin Hall conductivity.” In addition, their notion of “topological order” does not match the modern
terminology of “long-range entanglement.” That is, Kane and Mele’s topological insulator is the
paradigmatic example of a topological phase that is not topologically ordered but symmetry protected.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE TOPOLOGICAL INSULATOR

112
PAGE

3.5. ‡ Experiments

• The possibility to observe the quantum spin Hall effect (via a quantized ← spin Hall conductance
that requires spin conservation, i.e., �R D 0) was predicted by Bernevig et al. in 2006 [118] and
experimentally confirmed byKönig et al. in 2007 [119] in so called ↑ HgTe quantum wells (HgTe
= Mercury-Telluride).

• The alloy Bi1�xSbx (BiSb = Bismuth-Antimony) was predicted to be a (strong) topological insulator
(in three dimensions) byFu andKane in 2007 [97]whichwas experimentally confirmed byHsieh
et al. in 2008 [120].

• Following these first discoveries, many more materials were identified as topological insulators.
For an extensive review including experimental results (before 2011) seeQi and Zhang [121].

Closing remarks for Chapters 1 to 3

We have now discussed two topological indices to label topological phases in two dimensions:

• The (first) Chern number classifies two-dimensional chiral topological phases (IQHE, QWZ
model, Haldane model); we discussed these models in Chapters 1 and 2.

– The Chern number cannot be generalized to three dimensions!
(There are generalizations to even dimensions, though [122].)

– For non-zero Chern numbers, time-reversal symmetry must be broken.

– Phases of non-interacting fermions in bands with non-zero Chern numbers are examples of
the ← invertible topological orders introduced in Section 0.5 [35].

• The Z2 Pfaffian index classifies symmetry-protected topological (SPT) phases in two dimensions
(Kane-Mele topological insulator); we discussed this model in Chapter 3.

– The Pfaffian index can be generalized to three dimensions and allows for the characterization
of three-dimensional topological insulators [96, 100, 123].

– For the Pfaffian index to be well-defined, time-reversal symmetry must be preserved.

– The Kane-Mele topological insulator is a ← short-range entangled phase protected by time-
reversal symmetry (and particle number/charge conservation) [35].

We now turn to topological phases of non-interacting fermions in one dimension…
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4. Topological Insulators in 1D: The
Su-Schrieffer-Heeger Chain

After our study of two-dimensional systems with topological band structures in Chapters 1 to 3, we now
turn to one-dimensional systems (still with non-interacting fermions). We will introduce the paradigmatic
Su-Schrieffer-Heeger chain and identify a new topological invariant to characterize its quantum phases.
However, as a preliminary step, we must introduce a new symmetry (beyond time-reversal symmetry)
called sublattice symmetry…

4.1. Preliminaries: Sublattice symmetry

1 | Reminder: (Symmetries we already know.)

In the following, OH denotes a non-interacting many-body Hamiltonian on (fermionic) Fock space
andH its single-particle counterpart.

• Unitary symmetry U:

UiU�1
D Ci and UciU

�1
D

X
j

U
�
ij cj (4.1a)h

OH;U
i

D 0 , UHU �
D H , ŒH;U � D 0 (4.1b)

• Time-reversal symmetry TU : [← Section 2.1.2]

TU iT
�1

U D �i and TU ciT
�1

U D

X
j

U
�
ij cj (4.2a)h

OH; TU

i
D 0 , UH�U � $ H , ŒH; UK„ƒ‚…

TU

� D 0 (4.2b)

Note that both U and UK are valid symmetries on the single-particle Hilbert space (i.e., they
commute with the HamiltonianH ), in accordance with Wigner’s theorem (→ Problemset 1).

2 | Other symmetry types (?):

Having the (classes of ) symmetries Eqs. (4.1) and (4.2) inmind, are there other types of symmetries
that one can realize on a fermionic Fock space?

• ^ Unitary like U but with ci $ c
�
i :

CU iC
�1
U D Ci and CU ciC

�1
U D

X
j

U
��
ij c

�
j (4.3a)h

OH;CU

i
D 0 , UH�U � $ �H , fH; UK„ƒ‚…

CU

g D 0 (4.3b)
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¡! Note thatH anticommutes with CU : f�; �g D 0

(The complex conjugate in U �
ij is conventional and not crucial.)

! CU : ⁂ Particle-hole symmetry (PHS)

→ Future lectures on topological superconductors

• ^ Antiunitary like TU but with ci $ c
�
i :

SU iS
�1
U D �i and SU ciS

�1
U D

X
j

U
��
ij c

�
j (4.4a)h

OH;SU

i
D 0 , UHU � $ �H , fH; U„ƒ‚…

SU

g D 0 (4.4b)

¡! Note thatH anticommutes with SU (f�; �g D 0) but also that there is no complex conjuga-
tion on the single-particle level, i.e., SU D U is a unitary operator. (The complex conjugate
in U �

ij is again conventional and not crucial.)

! SU : ⁂ Chiral- or Sublattice symmetry (SLS)

Here we stick to the term“sublattice symmetry” (SLS).

But why should we call SU “sublattice symmetry” in the first place?
→ Next point below…

Note: The same arguments used for time-reversal symmetry (← Section 2.1.2) lead to

fH;U g D 0 )
�
H;U 2

�
D 0

H generic
HHHHH) U 2

D ei'1 (4.5)

! Redefine QU D e�i'=2U ! QU 2 D C1! w.l.o.g. U 2 D C1

! In contrast to time-reversal, there are not two“types” of sublattice symmetry!

(This difference is due to the missing antiunitarity on the single-particle level.)

¡!WhereasU and TU can be interpreted as symmetries both onFock space and on the single-particle
Hilbert space, particle-hole symmetryCU and sublattice symmetrySU are only symmetries onFock
space; on the single-particle Hilbert space they act as unitary and antiunitary ↑ pseudosymmetries,
respectively (i.e., they anticommute with the single-particle Hamiltonian).

This should be not surprising since both include an exchange of particles with holes, so that theymix
sectors of different particle numbers. Such an operation is intrinsic to the many-particle description
in Fock space and cannot be sensibly defined (or interpreted) as a symmetry in a (first quantized)
single-particle description.

3 | Why “sublattice symmetry”?

i | ^ SP HamiltonianH with UHU � D �H

! Spectrum �.H/ D �.�H/

! Spectrum symmetric about E D 0

By contrast, TRS implied a symmetric spectrum about the energy axis: E.k/ D E.�k/.

ii | AssumeH is 2L � 2L-matrix !

9 UnitaryM W MHM �
D

�
D 0

0 �D

�
with diagonal matrixD. (4.6)
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!

.QM/H.QM/� D

�
0 D

D 0

�
with Q D

1
p
2

�
1 1

1 �1

�
(4.7)

To see this, remember that a Hadamard gateH transforms a �´ Pauli matrix into a �x Pauli
matrix under conjugation.

Note thatQM is just a unitary basis transformation in the SP Hilbert space.

iii | This means that for a sublattice symmetric system, there exists a unitary transformation of
modes Qci D

P
j

QUij cj such that

OH D

X
i;j

c
�
i Hij cj

SLS
D

w.l.o.g.

X
i;j

Qc
�
i

QHij Qcj (4.8)

with block-off-diagonal SP Hamiltonian

QH D

�
0 h Hopping A 7! B

h� 0 Hopping B 7! A

�
(4.9)

The two subsets of modes A and B are referred to as “sublattices” even if a spatial lattice
structure is missing.

iv | QH couples only modes between the two“sublattices”A and B :

Often this sublattice structure is already visible in the real-space basis, i.e., a transformation
to QH is not even necessary (SSH chain → below).

If one interprets QH as a (complex valued) adjacency matrix of a graph, the “sublattice
symmetry” would be called ↑ bipartiteness. And indeed, it is well-known that a graph is
bipartite if and only if the spectrum of its adjacency matrix is symmetric [124, Chapter 6.5].

v | Example: Graphene
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Note that a chemical potential �
P

i c
�
i ci can be interpreted as a hopping from site i to the

same site; therefore it violates SLS.

4.2. The Su-Schrieffer-Heeger chain

• The Su–Schrieffer–Heeger (SSH) chain is a model of non-interacting, spinless fermions in one
dimension that has been introduced by Su, Schrieffer andHeeger in 1979 [125] to describe
soliton formation in polyacetylene (a linear chain of carbon atoms with alternating single and double
bonds and one hydrogen atom bound to each carbon atom).

• In the context of topological phases, the model has become the example of choice to illustrate
topological invariants and the emergence of robust edge modes [2] (which is why we study it).

• A detailed exposition of the SSH chain is given in the textbook byAsboth [2] but may also be
found in almost any other textbook on topological insulators. There is also an introduction in my
PhD thesis [126] (on which this section is based) with a quite detailed discussion of edge states in
the appendices of Chapter 3.

1 | ^ 1D lattice with 2L sites grouped into L unit cells:

ai ; bi : spinless fermion modes (i D 1; : : : ; L)

We can now define the ⁂ SSH chain Hamiltonian:

OHSSH D t

LX
iD1

.a
�
i bi C b

�
i ai /„ ƒ‚ …

Intra-site hopping

Cw

L0X
iD1

.b
�
i aiC1 C a

�
iC1bi /„ ƒ‚ …

Inter-site hopping

(4.10)

• t; w 2 R: alternating hopping amplitudes

• L0 D L � 1 for OBC and L0 D L for PBC

Wewill use both boundary types: Open boundaries (OBC) to study edge modes, and periodic
boundaries (PBC) allow for Fourier transformation and definition of a topological index.

2 | Symmetries:

The SSH Hamiltonian (4.10) has several symmetries, not all crucial for the following discussion:

• Particle-number conservation/symmetry (PNS)
This is an intrinsic symmetry of the class of quadratic fermion models without superconduc-
tivity; we cannot break it without leaving this class.

• Translation symmetry (TS)
Translation symmetry is typically broken in real samples due to disorder.

• Sublattice symmetry (SLS):

S iS�1
WD �i and SaiS

�1
WD a

�
i and SbiS

�1
WD �b

�
i (4.11)
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! Œ OHSSH;S � $ 0

Note that the minus sign bi 7! �b
�
i is crucial for the commutation with the Hamiltonian!

The above definition is realized by the operator

S $
Y

i

.a
�
i � ai /.b

�
i C bi / ı K (4.12)

Use fai ; a
�
i g D 1 and a2

i D 0 D .a
�
i /

2 (and the same for bi ) to show this.

• Time-reversal symmetry (TRS):

T iT �1
WD �i and T ai T

�1
WD ai and T bi T

�1
WD bi (4.13)

! Œ OHSSH; T � $ 0

• Particle-hole symmetry (PHS):

C iC�1
WD i and Cai C

�1
WD a

�
i and Cbi C

�1
WD �b

�
i (4.14)

! Œ OHSSH;C � $ 0

Are all these symmetries of the same importance to characterize the SSH chain?

3 | ^ “Generic” SSH chain:

OH 0
SSH D

LX
iD1

.ti a
�
i bi C t�i b

�
i ai /C

L0X
iD1

.wi b
�
i aiC1 C w�

i a
�
iC1bi / (4.15)

ti ; wi 2 C: site-dependent & complex hopping amplitudes
ı
�! Preserved symmetries: PN & SLS
(Check that the complex hoppings destroy both TRS and PHS but not SLS.)

! Sublattice symmetry is the natural symmetry of the SSH chain.

¡! For the analytical analysis below, we will still assume translation invariance so that we can Fourier
transform the Hamiltonian. However, if one studies the model numerically, one can add translation-
symmetry breaking perturbations to the Hamiltonian and verify that the features (in particular:
the quantum phases) of the SSH chain are robust to SLS-symmetric disorder (→ discussion of edge
modes below).
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↓ Lecture 14 [05.06.25]

4.3. Diagonalization

As a first step, we diagonalize the SSH Hamiltonian (quadratic fermions!) to obtain the spectrum and
sketch the quantum phase diagram. To this end, we return to real & uniform hopping strengths t andw:

4 | ^ OHSSH with PBC and Fourier transform

Qxk D
1

p
L

LX
nD1

e�iknxn ; x D a; b (4.16)

ı
�!

OHSSH D

X
k2BZ

�
Qa

�

k
Qb
�

k

�
�

�
0 t C we�ik

t C weik 0

�
„ ƒ‚ …

H.k/

�

�
Qak
Qbk

�
(4.17)

BZ: Brillouin zone = (discrete) Circle S1

Here BZ D
˚

2�
L
� j � D 0; : : : ; L � 1

	
.

5 | Bloch Hamiltonian:

H.k/ D .t C w cos k/ �x
C w sin k �y

� Ed.k/ � E� (4.18)

with Bloch vector

Ed.k/ D

0@t C w cos k
w sin k
0

1A (4.19)

6 | Band structure:

Recall our discussion of general two-band models in Section 2.1.1.

E˙.k/ D ˙j Ed.k/j D ˙

p
t2 C w2 C 2tw cos k (4.20)

There are two bands due to the two fermionic modes ai and bi per unit cell i .
The ˙ (without a constant energy offset) is a consequence of SLS (as discussed above).

7 | ! Phase diagram:

Bandgap: �E D mink jEC.k/ �E�.k/j $ 2jjt j � jwjj (this is valid for t; w 2 R)

^ t; w > 0 ! Gapless point for w D t , gapped insulator for w 7 t :
(The restriction t; w > 0 is not important as chains with different signs are unitarily equivalent.)
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! Unique ground state in A and B (! no symmetry breaking)

! How to distinguish/label the two gapped phases A and B?

We cannot use the Chern number because the Brillouin zone is S1 in one dimensional systems
(and not a torus T 2). The Chern number, however, is only defined on a two-dimensional manifold!

! Idea:

Can we use SLS to define a new topological invariant?

Just like we used TRS to define the Pfaffian invariant to label the phases of the Kane-Mele model…

4.4. A new topological invariant

8 | Observation: PNS does not constrainH.k/

For anyH.k/ the many-body Hamiltonian (4.17) conserves particle number by construction.

! ^ SLS:h
OHSSH;S

i
D 0

4.4
, U �HU D �H

4.11
, �´H.k/�´ $ �H.k/ (4.21)

The last condition follows along the same lines as for time-reversal symmetry [Eq. (2.29b)] with
the unitary U defined by Eq. (4.11).

9 | Eqs. (2.8) and (4.21) ! Constrained Bloch vector:

d´.k/
SLS
D 0 8 k 2 BZ (4.22)

! Ed.k/ cannot leave the x-y-plane

10 | ^ Gapped phase ! Normalization possible:

Od.k/ D

Ed.k/

j Ed.k/j
(4.23)

11 | ! Winding number around the origin in the x-y-plane is well defined:

�Œ Od� WD
1

2�

Z
BZ

Oe´ �

h
Od.k/ � @k

Od.k/
i
dk 2 Z (4.24)

¡! It is crucial that Od is pinned to the x-y-plane by SLS for this to be an integer.
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12 | The winding number � distinguishes the Two phases:

[This follows directly from the form of the Bloch vector Eq. (4.19).]

� D

(
0 for t > w (Phase A)
1 for t < w (Phase B)

, (4.25)

The phase A is trivial because it can be connected to the limit t ¤ 0 and w D 0 without closing
the gap. For these parameters, the different sites (each with two fermion modes ai and bi ) do not
couple at all and the ground state is a trivial product state.

13 | ‡ Some comments:

• Homotopy:

We can embed this new topological invariant and the Chern number into a bigger picture if
we invoke the concept of homotopy groups from topology. Simply speaking, the homotopy
group �p.X/ for p D 0; 1; 2; : : : and a topological spaceX consists of equivalence classes of
continuous maps from the p-dimensional sphere Sp intoX , where two maps are considered
equivalent if they can be transformed into each other continuously (if the space X has a
dedicated“base point” one can glue two such maps together and obtains a group structure
on these equivalence classes).

The maps we are interested in are the Bloch vectors Od.k/ that map the Brillouin zone onto
the sphere X D S2. In 1D, the BZ is S1 so that we are interested in the homotopy group
�1.S

2/ D 0which is trivial because every circle (S1) that you drawonto the sphere (X D S2)
can be continuously contracted to a point (which represents the constant map):
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This is why there is no analog of the Chern number in 1D. By contrast, in 2D the BZ is a
torus T 2 which we can simplify to the sphere S2 in the continuum limit (thereby ignoring
weak topological indices), so that we are interested in the homotopy group �2.S

2/ D Z.
Now there are different homotopy classes (corresponding to different topological phases)
that are labeled by an integer – the Chern number – and distinguished by how often they
wrap the target sphere when tracing over the domain sphere (which is hard to visualize,
← Section 2.1.1).

However, if we are in 1D and a symmetry like SLS restricts the Bloch vector to a 2D cut of
S2, namely a circle S1, then we are interested in the homotopy group �1.S

1/ D Z. The
different homotopy classes consist of maps from the circle onto the circle that have different
winding numbers, and therefore cannot be continuously deformed into each other:

The label in this situation is the topological index � defined above.

• Zak phase:

We introduced the topological index � as a winding number of the Bloch vector. When we
discussed the Chern number, we arrived at it via the Berry curvature, and only later showed
that in systems with two bands it can be interpreted as a winding number of the Bloch vector.
This begs the question whether there is a similar expression in terms of Bloch states (instead
of the Bloch vector) to distinguish the two phases of the SSH chain?

The answer is “yes” and known as the Zak phase [127]:

'Zak D

Z
S1

ihu.k/j@ku.k/idk (4.26)

where ju.k/i are the Bloch states of the lower (filled) band. The Zak phase is the Berry phase
collected when traversing the 1D BZ (note that there is no Berry curvature in 1D).

Remember that the Berry phase is a gauge dependent quantity and can change by multiples
of 2� under continuous gauge transformations. The two phases of the SSH chain are then
distinguished by the difference of their Zak phases:

�'Zak D .'
topological
Zak � 'trivial

Zak / mod 2� D � (4.27)

Proof: → Problemset 7

This quantity has already been measured in experiments with cold atoms in optical lattices
[128].
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• Polarization:

Remember that in momentum space the position operator has the form Ox D i@k . The
expression (4.26) for the Zak phase then looks very much like the expectation value of the
position operator in the many-body ground state (= all states in the lower band filled). Indeed,
the quantity 'Zak

2�
is kown as ↑ polarization and quantifies the polarization of charge within a

unit cell. The difference�'Zak D � between the two phases then translates to a difference in
polarization by 1

2
(in units of the lattice constant). And if you have a look at the distribution

of hopping strengths within and between unit cells for the two cases t > w and t < w, it
is immediately clear that the electron in a unit cell will be localized either in its center (for
t > w) or between two adjacent unit cells (for t < w), producing the difference of 1

2
in

polarization. See [2, Section 3.2.3] for more details.

4.5. Breaking the symmetry

The topological phase of the SSH chain is – supposedly – a symmetry-protected topological (SPT) phase
that is protected by sublattice symmetry. According to our discussion in Section 0.5 we shoud therefore
be able to transform the Hamiltonian without closing the gap into a trivial band insulator if we break SLS.

Let us check this explicitly…

14 | Add a staggered chemical potential:

OH 0
SSH D OHSSH C �

LX
iD1

.a
�
i ai � b

�
i bi /„ ƒ‚ …

OH�

(4.28)

Important: Œ OH�;S � ¤ 0

To see this, remember the interpretation of SLS as bipartiteness of the coupling graph.

15 | ! New Bloch vector:

Ed.k/ D

0@t C w cos k
w sin k
�

1A (4.29)

! Spectrum:

˙E˙.k/ D j Ed.k/j D

q
�2 C t2 C w2 C 2tw cos k � j�j (4.30)

! Gapped for all w; t (in particularw D t) if � ¤ 0

Note that the spectrum becomes flat for t � w D 0 and the many-body ground state of OHSSH for
t > 0 andw D 0 is a simple product state at half-filling with one delocalized fermion per unit cell;
we label this state as “trivial.” For t D 0 and w > 0 the bands are again flat and the many-body
ground state can be read off the Hamiltonian: now the fermions are delocalized between two
modes of adjacent unit cells. The family of Hamiltonians OH 0

SSH connects these two representatives
adiabatically, i.e., without crossing a phase transition (→ next point).
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16 | Connect phases without closing the gap:

• Note that the winding number (4.24) is not quantized for � ¤ 0 (= no longer an integer).

• This situation is typical for SPT phases.

• This also demonstrates that the topological phase of the SSH chain is not topologically
ordered (= long-range entangled).

4.6. Edge modes

We now cut the SSH chain open to study one of the characteristic features of topological phases, namely
the emergence of robust edge modes on boundaries:

Remember the inter quantum Hall states (Chapter 1), Chern insulators (Chapter 2), and topological
insulators (Chapter 3) all feature robust edge modes on 1D boundaries of 2D samples. By contrast, here
we consider a 1D system with 0D boundaries (points).

17 | ^ Open chain of length L:

For a qualitative understanding, we consider the ↑ renormalization fixpoints in each of the two
phases (characterized by a vaninshing correlation length):

• Trivial phase (A) for t > 0 and w D 0:

! SP Spectrum:

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE SU-SCHRIEFFER-HEEGER CHAIN

124
PAGE

Note that due to the OBC, momentum is no longer a good quantum number, the x-axis is
therefore of no relevance.

• Topological phase (B) for t D 0 and w > 0:

! ⁂ Edge modes Qal D a1 and Qbr D bL commute with OHSSH

To see this, note that a1 and bL no longer show up in OHSSH.

! 4-fold degenerate ground state space
The four ground states jnl ; nri are labeled by the occupancy nl D 0; 1 and nr D 0; 1 of the
edge modes Qal and Qbr , i.e., Qa

�

l
Qal jnl ; nri D nl jnl ; nri etc.

! SP Spectrum:

Remember that the phase is still gapped, despite the edge modes within the gap.

18 | Edge modes persist for t > 0 as long as t < w (= in the topological phase):

Qal � N

LX
iD1

�
�
t

w

�i�1

ai and Qbr � N

LX
iD1

�
�
t

w

�i�1

bL�iC1 (4.31)

The normalization N depends on t; w and L.

! Exponentially localized on edges
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To show that these are fermionic edge modes in the thermodynamic limit, you must first verify
that they indeed describe two fermions,

f Qal ; Qalg D 0 ;
n

Qal ; Qa
�

l

o
D 1 ;

n
Qa

.�/

l
; Qb.�/

r

o
D 0 (4.32a)n

Qbr ; Qbr

o
D 0 ;

n
Qbr ; Qb�

r

o
D 1 : (4.32b)

Now you know that Qal and Qbr are proper fermionic modes. They are edge modes because their
mode weight is exponentially localized on the two edges of the chain. To show that they are edge
modes of the SSH chain, you must show that they commute with the Hamiltonian (up to corrections
that vanish exponentially in the system size):h

Qal ; OHSSH

i
D O

��
t
w

�L� and
h

Qbr ; OHSSH

i
D O

��
t
w

�L�
: (4.33)

This proves the four-fold degeneracy of the ground state space forL ! 1 in the topological phase
t < w, even away from the fixpoint t D 0. Note that this argument fails in the trivial phase for
t > w!

Details: → Problemset 7

! Finite-size scaling of SP spectrum:

Because of the finite extend of the edge modes, there is an exponentially suppressed amplitude for
a fermion located on one edge to tunnel across the chain to the other edge. The true eigenstates are
therefore non-degenerate symmetric and antisymmetric superpositions of exponentially localized
modes on the two boundaries. This splitting vanishes exponentially fast with the system size L.
The edge mode splitting away from the fixpoint with t D 0 is therefore a finite-size effect.

You have observed a similar effect for the edge modes of the Kane-Mele model (Section 3.4) when
studying narrow strips with open boundaries on → Problemset 6: There, two of the four crossings
of edge modes gapped out when the distance between the two open boundaries was small (the
other two crossings were protected by time-reversal symmetry).

19 | Disorder:

The topological origin of the edge modes makes their existence & degeneracy robust against
SLS-preserving disorder:

See three plots → below. (Use beamer to show plots.)

• ^ No disorder:

Plot SP spectrum of Eq. (4.10) forw D 1 � t and t 2 Œ0; 1� for a chain of length L D 40:
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! Degenerate zero-energy edge modes appear for t < 0:5 (= in the topological phase)

• ^ SLS-preserving disorder:

Plot SP spectrum with t 7! ti and w 7! wi site dependent [Eq. (4.15)]. Choose normal
distributed couplings with hti i D t , hwi i D w andw D 1� t for t 2 Œ0; 1�, with variance of
20% of the mean:

¡! Every spectrum (= points in a column) is computed from a different random configuration
of couplings for a prescribed mean.

! Bulk spectrum is scrambled but Edge modes remain degenerate and are not influenced
by the disorder in the topological phase.

Whereas the behaviour of the bulk spectrum is generic, the degeneracy of the edge modes
is highly atypical and a consequence of the topological nature of the phase (and of course
SLS). It is this remarkable behaviour of edge modes that is often referred to as “topologically
robust ground state degeneracy” in the context of SPT phases.

• ^ SLS-breaking disorder:

Let t andw be again uniform but add a site-dependent chemical potential �a
i a

�
i ai C �b

i b
�
i bi to
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the Hamiltonian (4.10) (this breaks SLS!). We choose �x
i normal distributed around zero

with variance of 0:1 (remember thatw C t D 1):

The complete spectrum (including the edge modes) is now generic as
! All degeneracies are lifted!

This demonstrates the symmetry-protection of the ground-/edge-state degeneracy.

20 | Comments:

• These results finally explain (at least partially) how the classical “experiment” in Section 0.1
(wherewe tried to transfer energywith a chain of coupled, classical pendulums)wasmotivated.
Our findings above explain where the (classical) edge modes come from, and why they are
robust against particular types of disorder. Recall that the energy transfer between pendulums
on the boundary was perfect for disorder in the springs; this corresponds to SLS-preserving
disorder in the hopping amplitudes t andw of the SSH chain. Conversely, disorder in the
eigenfrequencies (= lengths) of the pendulums maps to SLS-breaking chemical potentials.
(In this situation, the energy transfer was imperfect since the two edge-modes were no longer
in resonance.) What remains unclear is how exactly our results for many-body quantum
systems (described by a Hamiltonian and the Schrödinger equation) translate to classical
systems (described by Newtonian equations of motion); we study this → later in ??.

• Our study of edge modes suggests that these modes exist throughout the topological phase
of the SSH chain. Note that our characterization in terms of the winding number (4.24) relies
on translation invariance (since we make use of the Bloch Hamiltonian) – but this symmetry
is explicitly broken in the scenario with SLS-preserving disorder above. The survival of
the degenerate edge modes shows that the topological phase is not protected by translation
symmetry – it is our characterization in terms of the winding number that makes use of this
“auxiliary symmetry.” The fact that the topological nature of the bulk influences the physics
on the boundary is known as ↑ bulk-boundary correspondence. We encountered other examples
previously; for instance, the robust boundary modes of quantum Hall states (Section 1.6)
reflect the non-zero Chern number of Landau levels (which describe the bulk).

• You show on → Problemset 7 analytically that edge modes of the form (4.31) persist even in
the presence of SLS-preserving disorder (which explains the numerical results above).
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4.7. ‡ Experiments

• The single-particle physics of the SSH chain has been reproduced experimentally on various plat-
forms [128–131]. Realizing the fermionic many-body ground state of OHSSH is experimentally much
more challenging (at least I am not aware of any experiments).

• The topological edge physics of the SSH chain can be applied to the problems of state transfer
in quantum chains. We studied this concept theoretically in Ref. [20]; this is the paper that the
classical motivation in Section 0.1 is based on. Experiments of this concept have been reported as
well [132, 133].

• In 2019, we explored the single-particle physics of the SSH chain experimentally with a quantum
simulator based on Rydberg atoms that interact via dipolar interactions [134]. In this experiment,
we were interested in an SSH chain filled with hardcore bosons instead of fermions (→ Problemset 1).
While the single-particle physics (including edge states) is the same for both particle types, the
many-body ground state and the symmetry classification is very different. We study the effect of
interactions on topological phases in one-dimension in → Part II.
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↓ Lecture 15 [06.06.25]

5. Topological superconductors in 1D: The
Majorana Chain

5.1. Preliminaries: Particle-hole symmetry and mean-field
superconductors

Before we can discuss the Majorana chain – the paradigmatic model of a topological superconductor – we
first review a few important concepts needed for its description:

• Remember (← Section 4.1):

Particle-hole symmetry (PHS) CU :

The naming should be evident:
CU exchanges particles with holes (ci $ c

�
i ) up to a unitary transformation U .

CU iC
�1
U D Ci and CU ciC

�1
U D

X
j

U
��
ij c

�
j (5.1a)h

OH;CU

i
D 0 , UH�U �

D �H , fH; UK„ƒ‚…
CU

g D 0 (5.1b)

(The complex conjugate at the U is convention and not crucial.)

!

– Unitary symmetry on MB Hamiltonian

– Antiunitary pseudosymmetry on SP Hamiltonian

As a pseudosymmetry, CU D UK anticommutes with the SP Hamiltonian.

Of course, this symmetry will be crucial to define a new topological invariant.

• Remember (↓ your lecture on solid state physics):

BCS theory of superconductivity:

Until now, we only considered (topological) insulators, i.e., quadratic fermion theories with particle
number conservation. By contrast, the Majorana chain is a (topological) superconductor, where only
fermion parity survives as symmetry. Let us briefly review how these particle-number violating
terms emerge from a microscopic theory:

1 | ^ ⁂ BCS Hamiltonian: (BCS = Bardeen-Cooper-Schrieffer)

OHBCS D

X
k;�

."k � �/ c
�
k�
ck�„ ƒ‚ …

Free fermions

C

X
k;k0

Vkk0 c
�

k"
c

�

�k#
c�k0#ck0"„ ƒ‚ …

Pairing term (interaction)

(5.2)
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� 2 f";#g: fermion spin

�: chemical potential

"k: free fermion dispersion

Vkk0 : pairing potential

– Rationale: Superconductivity is a condensation mechanism that is triggered by attrac-
tive interactions Vkk0 (mediated by phonons) between fermions. The formation of
bosonic ↓ Cooper pairs then lowers the energy, the Cooper pairs condense and form the
superconducting condensate.

– Note that Eq. (5.2) is a theory of interacting fermions with particle-number conser-
vation. The symmetry group U.1/ is generated by the total particle number operator
N D

P
k;� c

�
k�ck� with Œ OHBCS; N � D 0. Due to the interactions, Eq. (5.2) cannot be

diagonalized exactly.

2 | The BCS Hamiltonian is interacting (= not quadratic) and therefore hard to study.

! ↓ Mean-field theory:

c
�

k"
c

�

�k#
D X�

k C .c
�

k"
c

�

�k#
�X�

k/ with X�
k D hc

�

k"
c

�

�k#
i (5.3a)

c�k0#ck0" D Xk0„ƒ‚…
Mean

C .c�k0#ck0" �Xk0/„ ƒ‚ …
Small fluctations ıXk0

with Xk D hc�k0#ck0"i (5.3b)

⁂ Cooper pair condensation ,Xk0 ¤ 0 and ıXk0 small

[The approximation c�

k"
c

�

�k#
D X�

k
� 1C ıXk means that we expect the ground state to be

(approximately) invariant under the application of c�

k"
c

�

�k#
(and similarly c�k#ck"). This

can only be true if the ground state is a superposition of states with all possible numbers of
fermions (with the same parity). Such a superposition is usually called a ⁂ condensate.]

! Drop terms of order O.ıX2
k0/ (and a constant offset):

OHmf
BCS $

X
k;�

."k � �/ c
�
k�
ck�„ ƒ‚ …

Free fermions

C

X
k

h
�k c

�

k"
c

�

�k#
C��

k c�k#ck"

i
„ ƒ‚ …

Quadratic pairing terms

(5.4)

with order parameter

�kD

X
k0

Vkk0Xk0 2 C (5.5)

Since here Cooper pairs are formed by fermions with total spin zero [Xk D hc�k0#ck0"i]
this is called ↓ s-wave superconductivity.

– ¡! OHmf
BCS is no longer particle-number conserving; only the fermion parity P D .�1/N

is conserved: Œ OHmf
BCS;P � D 0.

– The Z2 group generated by P is a subgroup of U.1/ generated byN , hence this is an
example of ← spontaneous symmetry breaking (Section 0.4), where the superconducting
condenstate breaks (global) particle-number conservation and only fermion parity sur-
vives. The Hamiltonian OHmf

BCS makes only sense as an effective mean-field description that
excludes the superconducting condensate from/into which pairs of electrons can be
transfered.
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[As mentioned in Section 0.5, the correct classification of the superconducting phase
is subtle [35]. When the fermions are charged and coupled to a dynamical gauge field,
the transition is not described by SSB but a topological phase transition [39, 40]. When
the fermions couple to a static (= background) gauge field, the transition is described by
spontaneous breaking of the global U.1/ symmetry. It is not correct (as one sometimes
hears) that the (local) gauge symmetry is broken spontaneously [135–138].]

– The benefit of the mean-field description OHmf
BCS of superconductivity is that the Hamil-

tonian is quadratic in fermions and therefore fits our current class of models (“non-
interacting fermions”).

In this section, we consider quadratic fermion Hamiltonians of the form (5.4) (i.e., with
superconducting pairing terms). We treat these models as fundamental, and ignore that
they actually arise from microscopic, interacting, particle-number conserving theories via
spontaneous symmetry breaking!

5.2. The Majorana chain

A detailed exposition of the Majorana chain is given in the textbook by Bernevig [1] but may also be found
in almost any other textbook that covers topological superconductors. Furthermore, the original paper by
Kitaev is worthwile to read [139]. There is also an introduction in my PhD thesis [126] (on which this
section is based) and a more detailed account in my Master thesis [140].

1 | ^ 1D superconductor of spinless fermions ci (= p-wave pairing):

OHMC WD �

L0X
iD1

�
w c

�
i ciC1 ��ciciC1 C h.c.

�
�

LX
iD1

�

�
c

�
i ci �

1

2

�
(5.6)

w 2 R: tunneling amplitude

� D ei� j�j 2 C: superconducting gap (� is the phase of the condensate)

� 2 R: chemical potential

L0 D L (PBC) or L0 D L � 1 (OBC)

• This is the mean-field theory (in real space!) of a “triplet superconductor” with p-wave
pairing, i.e., Cooper pairs consist of spin-polarized (and therefore effectively spinless) electrons
with total angular momentum of one.

Of course there are no true “spinless fermions” because of the ↑ spin-statistics theorem.
However, imagine you apply a strong magnetic field such that only fermions in spin-polarized
modes ci" are relevant for the low-energy physics (in particular: ground state). If only
operators like ci" show up in the (low-energy) Hamiltonian, one can drop the spin-index "

altogether: ci" 7! ci . This is what we mean by“spinless fermions.”

• ¡! We are interested in topological phase transitions between different superconducting phases
– and not in the superconducting phase transition itself (which is, as mentioned above,
described by spontaneous symmetry breaking). Therefore we do not determine the gap�
self-consistently (as done in BCS theory) but simply take it as a non-zero, translation invariant
parameter of the theory.
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• With a unitary transformation ci D e�i�=2c0
i one can remove the superconducting phase, so

that w.l.o.g. � D j�j is real. Note that since the system is one-dimensional, there cannot be
vortices in the superconducting condensate (= flux tubes).

• In one dimension, the ↑ Mermin-Wagner theorem forbids the spontaneous breaking of the
continuous U.1/ symmetry (particle-number conservation) that is responsible for the su-
perconducting phase. (Instead one finds a disordered phase known as a ↑ Luttinger liquid
with correlations that decay algebraically.) Thus one should think of the superconducting
terms in OHMC as being induced by the ↑ proximity effect of an attached three dimensional bulk
superconductor:

This is also (roughly) the setting used to study the Majorana chain in experiments [141]
(although there have been setbacks [142]).

2 | ^ PBC ! Fourier transform:

Qck D
1

p
L

LX
nD1

e�ikncn , cn D
1

p
L

X
k2BZ

eikn
Qck (5.7)

with k D
2�
L
m form D 0; : : : ; L � 1.

ı
�! (up to a constant)

OHMC D �

X
k2BZ

h
.2w cos k C �/ Qc

�

k
Qck C i� sin.k/ Qck Qc�k � i� sin.k/ Qc

�

�k
Qc
�

k

i
(5.8)

Note that because of the pairing terms, this Hamiltonian is not yet diagonal (despite there being
only a single mode per unit cell and no spin involved). To diagonalize it, we can use a trick:

3 | Bogoliubov-de Gennes Hamiltonian:

We expand the cosine term artificially (using an index substitution k 7! �k in the sum):

.2w cos k C �/ Qc
�

k
Qck 7!

1

2
Œ.2w cos k C �/ Qc

�

k
Qck C .2w cos k C �/ Qc

�

�k
Qc�k � (5.9)

!

OHMC D �
1

2

X
k2BZ

"
.2w cos k C �/ Qc

�

k
Qck C .2w cos k C �/ Qc

�

�k
Qc�k

C i2� sin.k/ Qck Qc�k � i2� sin.k/ Qc
�

�k
Qc
�

k

#
(5.10)

Introduce ⁂ Nambu spinors

‰k WD

 
Qck

Qc
�

�k

!
(5.11)

Note that the degrees of freedom described by the components of the Nambu spinor are not
independent but related by particle-hole symmetry. This is different from the introduction of other
pseudo-spinors in the situation of multiple DOFs per unit cell (like sublattices or internal DOFs).
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! Rewrite the Hamiltonian (up to a constant)

OHMC D
1

2

X
k2BZ

�
Qc
�

k
Qc�k

�
�

�
�2w cos k � � �2�i sin k
2�i sin k 2w cos k C �

�
„ ƒ‚ …

HBdG.k/

�

 
Qck

Qc
�

�k

!
(5.12a)

D
1

2

X
k2BZ

‰
�

k
HBdG.k/‰k (5.12b)

with ⁂ Bogoliubov-de Gennes Hamiltonian

HBdG.k/ D �.2w cos k C �/ �´
C 2� sin k �y

D Ed.k/ � E� (5.13)

and

Ed.k/ D

0@ 0

2� sin k
�2w cos k � �

1A (5.14)

The BdG Hamiltonian is a redundant matrix encoding of the MB Hamiltonian OHMC. It exists for all
quadratic fermion Hamiltonians, but is non-trivial (= not diagonal) – and therefore useful – only for
Hamiltonians with superconducting pairing terms. As the above construction demonstrates, its
existence is rooted in the algebra of the fermion operators.

4 | Bogoliubov transformation:

To diagonalize Eq. (5.12), we must diagonalize the BdG Hamiltonian:

U
�

k
HBdG.k/Uk D

�
E.k/ 0

0 �E.k/

�
(5.15)

Uk : unitary rotation in Nambu space
The symmetry of the spectrum follows from PHS of the BdG Hamiltonian (→ below).

Define new fermion modes ! ⁂ Bogoliubov quasiparticles:

Q‰k �

 
Qak

Qa
�

�k

!
WD U

�

k
‰k $

 
uk Qck C vk Qc

�

�k

v�
�k

Qck C u�
�k

Qc
�

�k

!
(5.16)

The coefficients uk and vk satisfy certain constraints to ensure that the new modes Qak obey
fermionic anticommutation relations:n

Qak ; Qa
�

k

o
$ jukj

2
C jvkj

2 Š
D 1 ; (5.17a)

f Qak ; Qa�kg $ vku�k C ukv�k
Š

D 0 : (5.17b)

That this structure for Uk is possible is again a consequence of the PHS of the BdG Hamiltonian
(→ below). Note that this additional structure is necessary because the Bogoliubov transformation
mixes particles and holes. By contrast, for the diagonalization of a non-superconducting Bloch
Hamiltonian, any unitary Uk yields a canonical transformation (because there one does not mix
annihilation with creation operators).

For Eq. (5.12) in the important special case � D w and � D 0 (→ later), one finds the explicit
expressions

uk $ i sin
k

2
and vk $ cos

k

2
: (5.18)
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5 | Spectrum: Eqs. (2.9) and (5.14) !

E.k/ D j Ed.k/j D

q
.2w cos k C �/2 C 4�2 sin2 k (5.19)

Because of the redundancy of the BdG Hamiltonian, the second band (and therefore the second
eigenenergy �j Ed.k/j ofHBdG) is “fake”…

…because

OHMC D
1

2

X
k2BZ

�
Qa

�

k
Qa�k

�
�

�
CE.k/ 0

0 �E.k/

�
�

�
Qak

Qa
�

�k

�
(5.20a)

D
1

2

X
k2BZ

h
E.k/ Qa

�

k
Qak �E.k/ Qa�k Qa

�

�k

i
(5.20b)

D

X
k2BZ

E.k/ Qa
�

k
Qak C const (5.20c)

where we usedE.k/ D E.�k/ and f Qak ; Qa
�

k
g D 1; i.e., for every k there is only one mode Qak with

energy CE.k/.

6 | Preliminary Phase diagram:

Let � ¤ 0 ! E.k/ D 0 only possible for k D 0; � !

E.0=�/ D j ˙ 2w C �j
Š

D 0 ) 2jwj D j�j (5.21)

! Two gapped phases:

Phase A: 2jwj > j�j and Phase B: 2jwj < j�j (5.22)

¡! In contrast to models with particle-number conservation, the gap here is not given by the
separation of two bands (there is only one!), and the ground state is not obtained by“filling” the
lower of two bands. SinceE.k/ > 0 for all k 2 BZ, Eq. (5.20c) implies that the many-body ground
state is the state with all modes Qak empty (→ next), and excited states are characterizied by occupied
modes (↑ Bogoliubov quasiparticles) with a finite (system-size independent) energy. This is the
gap of the system (induced by superconductivity); the quasiparticle excitations are “particle-hole
excitations” (superpositions of a fermion above and a hole in the condensate) and can be thought
of as “broken” Cooper pairs.

7 | Many-body ground state j�i with

Qakj�i
Š

D 0 8k 2 BZ (5.23)

! Unique BCS ground state (unique in both phases, i.e., no symmetry breaking!)

j�i /

Y
kW Qak j0i¤0

Qakj0i

5.16
5.18
/

wD�
�D0

Y
k2.��;�/

Qakj0i
ı
/ Qa0

Y
k2.0;�/

�
uk C vk Qc

�

�k
Qc
�

k

�
j0i (5.24a)

• This ground state is called quasiparticle vacuum ( Qakj�i D 0) and is different from the
physical vacuum ( Qckj�i ¤ 0), i.e., j�i contains superpositions of states with different
particle numbers of ci -fermions (this is true as long as � ¤ 0, i.e., in the presence of a
superconducting condensate).

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



FREE FERMIONS → THE MAJORANA CHAIN

135
PAGE

• As we will see → below, the parameter choice w D � and � D 0 corresponds to the fixpoint
in Phase A (which is topological). That the model simplifies at this point is apparent from
the spectrum (5.19) which becomes flat.

• Notice that in phase A (forw D � and � D 0) j�i has negative fermion parity because of
the zero-mode Qa0 (the other TRIMmode Qa� annihilates j0i and must not be applied). This
can be shown by deriving uk and vk explicitely for this case [Eq. (5.18)].

5.3. Symmetries and topological indices

Our next goal is to characterize (and distinguish) the two gapped phases A and B by topological features of
the BdG Hamiltonian:

8 | ^ Time-reversal symmetry:

i | w.l.o.g. � real ! T WD 1K ! Œ OHMC; T � D 0 ! TRS 3

More precisely: T iT �1 D �i and T c
.�/
i T �1 D c

.�/
i .

ı
�! After aFourier transform,TRS is represented as (acting on“Nambu space”) [←Eq. (2.31d)]

1H�
BdG.k/1 D HBdG.�k/ (5.25)

! QT D 1K ! TRS with QT 2 D C1

Systems with a TRS that squares to C1 are combined into the…

! ⁂ Symmetry class AI [→ Chapter 6]

The label has historical/mathematical meaning but is of no importance to us.
↑ Cartan’s classification of symmetric spaces

ii | Eqs. (5.13) and (5.25) ! Constraints on the BdG vector:

dx.�k/ D dx.k/ (5.26a)

dy.�k/ D �dy.k/ (5.26b)

d´.�k/ D d´.k/ (5.26c)

! Ed.k/ on EBZ Œ0; �� determinesHBdG.k/ completely

iii | ^ K� 2 f0; �g TRIM ! dy.K
�/ D 0

! Image Od.EBZ/ [ Od.k/ D
Ed.k/

j Ed.k/j
] on S2 must start & end on great circle:
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! All paths (= gapped & symmetric Hamiltonians) can be continuously contracted

! No topological phases /

Note that a BdG vector pointing in ´-direction corresponds to the Hamiltonian (5.6) with
w D 0 D � and only a chemical potential � ¤ 0, which is obviously a trivial band insulator
with all modes either empty or filled (depending on the sign of �).

iv | Boldly generalizing these findings, we could hypothesize:

One-dimensional systems of symmetry class AI do not allow for TPs.

This is true in general; → Chapter 6 on the classification of topological insulators & super-
conductors.

v | Conclusion for the Majorana chain:

TRS alone is not sufficient to characterize the phases of the Majorana chain.

! We need something else…

9 | ^ Particle-hole “symmetry”:

i | ^ Eqs. (2.31d), (5.1b) and (5.13)

The BdG Hamiltonian (matrix) has an intrinsic PHS:

�x H�
BdG.k/ �

x
D �HBdG.�k/ (5.27)

In real space this would read UH�
BdGU

� D �HBdG, where U acts as �x on the Nambu
subspace spanned by ci and c

�
i . Above we had no need to explicitly defineHBdG in real space.

! QC WD �xK ! PHS with QC 2 D C1

! ⁂ Symmetry class D [→ Chapter 6]

• This “symmetry” is tautological in the sense that it derives solely from the fermion
algebra. It does not correspond to a physical many body symmetry C of OHMC, so that
some authors do not call it a “symmetry” altogether. However, it is a valid antiunitary
pseudosymmetry of the BdG Hamiltonian – and this is all that matters for the discussion
that follows. Whether the algebraic constraint Eq. (5.27) onHBdG.k/ derives from a
physical symmetry or from the algebraic structure of the fermion algebra is irrelevant for
the topological classification ofHBdG.k/.

If this all seems a bit cryptic: → Problemset 8

• This teaches us something important: The“symmetry classes” we started to introduce
(like AI and D) should be thought of as classes/ensembles of matrices with certain
constraints. If these matrices derive from a many-body Hamiltonian (like a Bloch-
oder BdG Hamiltonian), these constraints can descend from real symmetries of the
many-body Hamiltonian. However, this is not always the case (as for the PHS of
superconductors). This explains the somewhat opaque statement that D describes the
family of superconductors without symmetries – where “symmetries” refers to physical
symmetries of the many-body Hamiltonian.

Note that the proper concept of “particle-hole symmetry” has not yet been fully settled
in the community [143], partially due to the tautological nature of the PHS above (which
is then refered to as charge conjugation instead of particle-hole transformation).
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ii | Eqs. (5.13) and (5.27) ! Constraints on the BdG vector:

dx.�k/ D �dx.k/ (5.28a)

dy.�k/ D �dy.k/ (5.28b)

d´.�k/ D d´.k/ (5.28c)

! Again Ed.k/ on EBZ Œ0; �� determinesHBdG.k/ completely

iii | ^ K� 2 f0; �g TRIM ! dx.K
�/ D 0 D dy.K

�/

Note that these are now two constraints as compared to TRS!

! Image Od.EBZ/ on S2 must start & end either on “north” or “south pole”:

! Two topologicall distinct classes of paths
(Only one of which can be continuously contracted to a point.)

! One topological phase possible , ! Z2-index

Note that the orientation of the Bloch sphere (and therefore the position of the poles) has no
physical meaning as it can be changed continuously by SU.2/ rotations in Nambu space (as
we did with the Bogoliubov transformation). Consequently, a path attached to the south pole
is unitarily equivalent to the shown path attached to the north pole.

iv | Boldly generalizing these findings, we could hypothesize:

In 1D, systems of class D allow for a single TP labeled by a Z2-index.

Again, this is true in general; → Chapter 6 on the classification of topological insulators &
superconductors.
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↓ Lecture 16 [20.06.25]

v | Conclusion for the Majorana chain:

The Z2-index classifies the phase for 2jwj < j�j as trivial and 2jwj > j�j as topological:

!

Phase A: 2jwj > j�j ! topological

Phase B: 2jwj < j�j ! trivial

(5.29)

In his original paper [139], Kitaev classified the two phases differently (using the Pfaffian to distin-
guish two classes of quadratic fermion Hamiltonians). The classification presented here, based
on the BdG Hamiltonian, is conceptually very different. However, it can be shown that the two
approaches lead to the same notion of trivial and topological phases [144].

We could be satisfied at this point, but there is actually more to be learned if we combine both PHS
and TRS…

10 | ^ PHS & TRS:

i | As argued above, PHS is intrinsic to the form of the BdG Hamiltonian (it cannot be broken).
Furthermore, for an open chain we can always find a TRS representation by gauging away
complex phases. Hence it is reasonable to consider the situation where both symmetries are
preserved.

^ TRS with QT 2 D C1 and PHS with QC 2 D C1

! ⁂ Symmetry class BDI [→ Chapter 6]

ii | Eqs. (5.26) and (5.28) ! Constraints on the BdG vector:

dx.�k/ D 0 (5.30a)

dy.�k/ D �dy.k/ (5.30b)

d´.�k/ D d´.k/ (5.30c)

! Still Ed.k/ on EBZ Œ0; �� determinesHBdG.k/ completely

iii | Image Od.EBZ/ on S2 …

• … is constrained to the great circle with dx D 0

• … and must start & end either on “north” or “south pole”:
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! Infinitely many topologically distinct classes of paths
(distinguished by their winding number)

! Infinitely many topological phases possible ! Z-index

iv | Boldly generalizing these findings, we could hypothesize:

In 1D, systems of class BDI allow for many TPs labeled by a Z-index.

Again, this is true in general; → Chapter 6 on the classification of topological insulators &
superconductors.

v | Conclusion for the Majorana chain:

Although TRS is not useful on its own, in combination with PHS it boosts the Z2-index of
D to a Z-index of BDI. For a single Majorana chain, this has the only benefit that we can
user either the topological index of D or the winding number of BDI to characterize the
topological phase; in this situation, they are equivalent. This is different if one considers
stacks of multiple parallel Majorana chains, where one can create infinitely many different
SPT phases when TRS is present (BDI) but only one if it is broken (D).

On → Problemset 8 you study stacks of time-reversal symmetric Majorana chains in class
BDI. There you show that interactions modify the Z-index constructed here to a Z8-index
(see also → Section 6.4).

vi | Final note: For the SP Hamiltonian having PHS and TRS means:

PHS: UCH
�U

�
C

5.1b
D �H (5.31a)

TRS: UTH
�U

�
T

2.31b
D CH (5.31b)

which implies

USHU
�
S D �H with US D UTU

�
C (5.32)

! Sublattice symmetry [Eq. (4.4)]

This is true in general and will be important → later (Chapter 6).

5.4. Majorana fermions

Why do we call the Majorana chain “Majorana chain” in the first place?

To answer this, we need a bit of algebra. As a bonus, we will find an unexpected relation between the
Majorana chain and the SSH chain discussed in Chapter 4:
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11 | ^ Set of fermion L operators fc1; c2; : : : ; cLg and define 2L⁂ Majorana operators

2i�1 D ci C c
�
i and 2i D i.c

�
i � ci / (5.33)

! There are two Majorana operators per fermion mode.

12 |
ı
�! Properties:

�
n D n and fn; mg D 2ınm for n;m 2 f1; : : : ; 2Lg (5.34)

• Up to a normalization, Majorana fermions behave like self-adjoint or real fermions. The
name originates from a similar concept in high-energy physics due to Ettore Majorana
(namely, real-valued solutions of the Dirac equation in Majorana representation). In con-
densed matter physics, however, the properties Eq. (5.34) should be seen as the defining
relations of Majorana operators.

• While the n describe “real” (Majorana) fermions, the ci describe “complex” (Dirac)
fermions. Eq. (5.33) demonstrates that the two Majoranas 2i�1 and 2i can be thought of
as the “real” and“imaginary part” of the complex fermion ci .

• We stress that Majorana fermions are not → anyons, they are fermionic quasiparticles (as
the name clearly states); only → Majorana zero modes can make their hosts (like vortices
in 2D px C ipy-superconductors) behave like anyons under adiabatic deformations of the
Hamiltonian.

13 | Pairs of Majoranas can be recombined to form a complex fermion:

ci
5.33
D

1
2
.2i�1 C i2i / and c

�
i

5.33
D

1
2
.2i�1 � i2i / (5.35)

Observation: We do not have to combine the original pairs of Majoranas! Actually, it is possible to
combine any pair of Majoranas to form a new fermion mode (→ below). This follows from Eq. (5.34)
which shows that all 2LMajorana modes “are made equal.”

14 | We can now rewrite the Majorana chain Hamiltonian in terms of Majorana operators:

Eqs. (5.6) and (5.35) !

OHMC $
i

2

L0X
iD1

Œ .�C w/ 2i2iC1 C .� � w/ 2i�12iC2 � �
i

2

LX
iD1

�2i�12i

(5.36)

¡! Note that the factors of i are needed for Hermiticity.

15 | ^ Special case � D w (this simplifies expressions but still allows us to access both phases)

! OHMC D �
�

2

LX
iD1

.i2i�12i /C w

L0X
iD1

.i2i2iC1/ (5.37)

Remember that the choice� D w also simplified the Bogoliubov transformation [e.g. Eq. (5.18)].

! SSH-like dimerization:
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16 | Comparison to the SSH chain:

The connection to the SSH chain is more than superficial. If one identifies ��=2 $ t andw $ w

[where t and w are the alternating hopping amplitudes of the SSH chain, Eq. (4.10)], then the
gapless points coincide: j�j D 2jwj for the Majorana chain [Eq. (5.21)] and jt j D jwj for the SSH
chain [Section 4.3].

One can consider a hybrid model of Majorana and SSH chain and study their competing phases
on the same footing [145]. This approach is also didactically valuable as it contrasts the different
symmetries of the two models quite nicely.

5.5. Edge modes

Due to the SSH-like dimerization, we should again expect topologically protected zero-energy modes on the
boundary of an open Majorana chain (in the topological phase). As usual, it is most instructive to focus on
the fixpoints of the two phases with zero correlation length:

17 | ^ Trivial phase (Phase B):

Let w D � D 0 and � > 0
5.37
��!

OHMC D �
�

2

LX
iD1

.i2i�12i /
5.33
D ��

LX
iD1

�
c

�
i ci �

1

2

�
(5.38)

! Pairing of Majorana modes on each site

! Unique ground state (with all physical fermion modes ci filled)

It is useful to keep in mind that i21 D 1 � 2c�c D .�1/n D P is the parity operator of the
fermion mode c D

1
2
.1 C i2/.

18 | Topological phase (Phase A):

Let w D � > 0 and � D 0
5.37
��!

OHMC D w

L0X
iD1

.i2i2iC1/
OBC
D w

L�1X
iD1

.i2i2iC1/ (5.39)

! Pairing of Majorana modes between adjacent sites

! Unique ground state for PBC but 2-fold degenerate ground state space for OBC

Let us try to understand the (claimed) degeneracy for OBC in more detail:

i | Define new fermion modes (i D 1; : : : ; L � 1):

ai WD
1
2
.2i C i2iC1/ and a

�
i D

1
2
.2i � i2iC1/ (5.40)

¡! Compare this pairing of Majorana modes with Eq. (5.35).
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Check that these are indeed fermions: fai ; a
�
j g D ıij .

Eq. (5.39)
ı
�!

OHMC D 2w

L�1X
iD1

�
a

�
i ai �

1

2

�
(5.41)

ii | Observation: There is One fermion mode missing!

Note that 1 and 2L do not show up in Eq. (5.39), so we can use them to construct another
fermion mode:

e WD
1
2
.2L C i1/ and e�

D
1
2
.2L � i1/ (5.42)

Note that the L � 1modes ai together with e obey the algebra of L fermionic modes, e.g.,
fe; e�g D 1 and fe; ai g D 0.

! One fermionic edge mode

Indeed, e describes a single fermion delocalized between the two endpoints of the chain:

e
5.33
D

i

2

�
c

�
L � cL„ ƒ‚ …

Right edge

C c
�
1 C c1„ ƒ‚ …
Left edge

�
(5.43)

iii | Ground states for OBC:

j�ni GS of OHMC , ai j�ni
Š

D 0 8 i D 1 : : : L � 1 (5.44)

Œ OHMC; e� D 0 ! Two ground states:

e�e j�0i D 0 j�0i„ ƒ‚ …
Edge mode empty

and e�e j�1i D 1 j�1i„ ƒ‚ …
Edge mode occupied

(5.45)

with j�1i D e�j�0i

e�e measures the occupancy of the edge mode.

19 | Comments:

• Comparison to the SSH chain:

Remember that the SSH chain also has edge modes (Section 4.6). However, these are
fermionic, i.e., the SSH chain (in the topological phase) has one independent (complex)
fermion on each edge. Consequently, the ground state degeneracy for an open chain is four-
fold. By contrast, theMajorana chain as aMajorana fermion per edge (and aMajorana fermion
can be thought of as “half” a fermion because it is the real/imaginary part of a complex
fermion). Both edges combined form a single (complex) fermion, so that the ground state
degeneracy is only two-fold.

• Many-body ground states (in detail):

As for the SSH chain, the two-fold degeneracy survives beyond the fixpoint for � D 0 as
long as j�j < 2jwj (up to finite-size effects). However, at the fixpoint, the two states j�0i

and j�1i have a particularly simple description that makes their condensate nature clear and
also explains the robustness of their degeneracy (↑ [126] for details):

j�0i /

X
nW jnj odd

jni and j�1i /

X
nW jnj even

jni (5.46)
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with
jni � .c

�
1/

n1.c
�
2/

n2 : : : .c
�
L/

nL j0i (5.47)

and jnj the number of fermions in configuration n.

– The ground states are the equal-weight superposition of all fermion configurations with
a fixed parity, in particular, of fermion configurations with different particle number.
This is the man-body manifestation of the superconducting condensate (note that
hciciC1i ¤ 0 for j�ni).

– Locally, the states j�0i and j�1i“look” the same. They can only be distinguished by
a global measurement of the total fermion parity. To lift their degeneracy, one has to
add the term e�e to the Hamiltonian OHMC. But for an open chain, this operator is highly
non local [as can be seen from Eq. (5.43)].

This scenario, namely multiple orthogonal ground states that are indistinguishable by
local operators, is actually the hallmark of ← topological order (→ Part III).

– There is actually another way to lift the degeneracy. Note that 1e D �e�1 so that
j�1i D 1j�0i, i.e., h�1j1j�0i ¤ 0 so that the Hamiltonian OHMC C 1 lifts the
degeneracy (recall that �

1 D 1). In contrast to e�e, 1 is localized on the left endpoint
of the chain. However, 1 violates fermion parity and it is believed that in nature only
Hamiltonians that commute with the parity operator are realizable (this is known as
↑ parity superselection), so this modification is mathematically sound but physically
impossible (→ comment below).

• Classification and the role of symmetries:

The above arguments have shown that the degeneracy of j�0i and j�1i is actually very
robust and does not rely on any symmetry (note that this does not contradict the topological
classification of OHMC as part of symmetry classD because of the discussed tautological nature
of the PHS). Consequently, the topological phase of the Majorana chain is not an SPT phase
but a topologically ordered phase (of the invertible kind) [29,35,44]. This is in stark contrast
to the SSH chain which is an SPT phase protected by sublattice symmetry.

[Remember (Section 4.5) that we had no trouble connecting the two phases of the SSH
chain with a chemical potential that breaks SLS. You cannot do the same thing with a single
Majorana chain! (Try it!) However, you can connect the two phases with two parallel chains,
which demonstrates the invertibility of the topological order.]

• A note on fermion parity:

The statement that the Majorana chain does not require any symmetry is subtle. To see this,
one can check that the Majorana edge modes l D 1 and r D 2L act on the ground states
as follows:

l j�0i D j�1i and r j�0i D �i j�1i : (5.48)

Since these operators are Hermitian and can be constructed from local fermion modes,
we could add them to the Hamiltonian as a perturbation, e.g., QHMC D OHMC C l . This
perturbation lifts the degeneracy such that the ground state of QHMC is unique, namely j�1i �

j�0i. This is not surprising as l violates the fermion parity symmetry Z
f
2 D f1;P g.

So the Majorana chain is protected by a symmetry after all: fermion parity. However, this
“symmetry” should not be counted as a real symmetry but as an implicit feature of fermionic
Hamiltonians (for instance, quadratic Hamiltonians automatically commute with P ) due to
the following reason:

Assume that the Hermitian (and unitary) operators l and r were admissible observables
of the theory. Make the length L of the chain large and assume that Alice can measure
l D c1 C c

�
1 on the left endpoint while Bob can apply the unitary gate r D i.c

�
L � cL/

on the right endpoint. Define the basis jxi � j�1i C .�1/x j�0i and let the system be
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initialized in the symmetric state jx D 0i so that Alice measures C1 with certainty. Now
Bob can send Alice a classical bit x 2 Z2 of information by flipping or not flipping this state
with r :

.r /
x

j0i /

(
j0i for x D 0

j1i for x D 1 :
(5.49)

This clearly violates causality since the bit x can be transmitted instantaneously over arbitrary
distances L; this really is a “spooky action at a distance” and should not be possible with
local measurements and operations. Therefore l and r are actually non-local operators,
despite their local appearance in terms of fermion modes!

The reason is that fermions are intrinsically non-local objects due to their statistics, and this
non-locality becomes relevant for operators that violate fermion parity. The upshot is that
the parity symmetry required for the Majorana chain (or any other fermion Hamiltonian) is a
logical consequence of locality – and not an additional symmetry constraint.

5.6. ‡ Application as topological quantummemory

Here we focused on the“condensed-matter side” of the Majorana chain (since this is a course on topolog-
ical quantum phases). However, the topological robustness of the ground state degeneracy suggests the
use of this system for quantum information storage (and processing):

1 | ^ Topological phase@� D 0 and � D w D 1 & Open boundary conditions:

OHMC D

L�1X
j D1

.i2j 2j C1/ � �

L�1X
j D1

Sj (5.50)

with ⁂ stabilizer generators Sj that satisfy�
Si ; Sj

�
D 0 ; S

�
j D Sj ; S2

j D 1 (5.51)

! ⁂ Stabilizer group S WD hfS1; : : : ; SL�1gi

• Here h�i denotes the (abelian) group generated by �.

• You study the stabilizer formalism on → Problemset 11.

• The stabilizer generators Sj D �i2j 2j C1 $ .�1/
a

�

j
aj measure the parity of the quasipar-

ticle modes ai defined in Eq. (5.40).

2 | Ground state space of Eq. (5.50):

C D f j‰i 2 H j 8S 2 S W S j‰i D j‰i g D span fj�0i; j�1ig (5.52)

Here j�0i and j�1i denote the two degenerate many-body ground states introduced in Eq. (5.44)
and explicitly written in Eq. (5.46).

! dimC D 2 ! Use ground state space to store a qubit:

j0i � j�0i and j1i � j�1i (5.53)

! Ground state space C = ⁂ Code space

In quantum information theory, a code space is a linear subspace of a larger Hilbert space that is
used to encode quantum information.
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3 | Qubit = Representation of U.2/

A qubit is a two-dimensional representation of U.2/ which is generated by three Pauli matri-
ces †x ; †y ; †´ (and the identity †0) which satisfy †a†b D ıab1 C i"abc†

c and therefore
Œ†a; †b� D 2i"abc†

c .
ı
�! Pauli matrices acting on C :

†´
� �i2L1 $ .�1/e

�e with

(
†´

j0i D Cj0i

†´
j1i D �j1i

(5.54a)

†x
� 2L D e�

C e

D i.c
�
L � cL/

with

(
†x

j0i D j1i

†x
j1i D j0i

(5.54b)

†y
� 1 D i.e�

� e/

D c
�
1 C c1

with

(
†y

j0i D Ci j1i

†y
j1i D �i j0i

(5.54c)

! Satisfy all properties of Pauli matrices 3

Indeed, it is easy to check that .†a/� D †a and†a†b D ıab1 C i"abc†
c using the properties

Eq. (5.34) of Majorana operators.

The operators†a are called ⁂ logical operators as they operate on the encoded (= logical) qubit.
To emphasize this, we denote them by†a and not �a.

4 | Observation: �
†a; Sj

�
D 0 8a;j (5.55)

! Measuring Sj does not destroy the qubit encoded in C ,

This feature is crucial to combat errors (→ below).
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↓ Lecture 17 [26.06.25]

5 | Error model:

We assume that random errors on the Majorana chain can be described by unitary operators with
the following properties:

• Local
This is a basic assumption of most error models: the environment acts locally on the system
that encodes quantum information (here the Majorana chain). Note that essentially all
Hamiltonians we study in physics have a locality structure.

• Parity-symmetric
In superconductors, fermionic parity is considered a natural symmetry that can be enforced
to high precision because fermions are created by breaking Cooper pairs (which costs energy).

This is not a fundamental symmetry and it can be violated by ↑ quasiparticle poisioning [146,
147].

• Rare & Uncorrelated
We assume that local errors happen independently of each other with a low probabilityp � 1

per site j D 1; : : : ; L and timestep (iid = independent and identically distributed). This is
often (but not always) a good approximation.

! Elementary (= physical) errors: Ej D �i2j �12j (j D 1; : : : ; L)

¡! Note that pairs shifted by a single site (�i2j 2j C1) are stabilizer operators that act trivially on
the code space [Eq. (5.52)]. If such an error occurs on a state j‰i 2 C it doesn’t do anything and
we can ignore it.

With Eq. (5.38) we can write elementary errors as Ej D 1 � 2c
�
j cj D .�1/nj . Measuring this

Hermitian operator therefore means that one observes whether a physical fermion site (mode) ci is
occupied or not. Unitarily applying this operator imprints phases on the many-body wave function
depending on the occupancy of the fermion modes.

6 | Logical errors induced by combinations of physical errors?

Logical errors are errors that affect the state of the logical qubit encoded in the codes space C .

• ^ Bit-flip errors: †x D 2L or †y D 1

Not parity-symmetric ! Cannot occur ,

• ^ Phase errors: †´ D �i2L1

Parity-symmetric but Non-local ! Cannot occur ,…

…except elementary errors accumulate:

LY
j D1

Ej„ƒ‚…
All errors

5.50
D �i1

"
L�1Y
iD1

Si

#
„ ƒ‚ …

D1 on C

2L D �†´ / (5.56)

To prevent a logical phase error†´ due to a single elementary (physical) error, it is crucial that
the two endpoints of the chain are far apart from each other (otherwise†´ is not non-local
and therefore a permissible error!). However, sometimes one might need to measure (or
apply) the logical operator†´ (after all, we want to do quantum computing with the encoded
qubit). This means that the endpoints of the Majorana chain must be moved close to operate
on the encoded qubit, but must remain far apart when storing the qubit for future use:
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Modifying the geometry to apply controlled unitary operations while suppressing unwanted
perturbations is a characteristic feature of → topological quantum memories and → topological
quantum computing.

! How can we prevent elementary errors from accumulating?

! Solution:

7 | Quantum error correction (QEC) protocol:

QEC protocols are classically controlled algorithms (no Hamiltonian dynamics!) with the goal to
systematically remove errors from quantum systems to protect quantum information. Their job is
to “pump entropy” out of the system.

^ Encoded qubit:

j‰0i D ˛j0i C ˇj1i 2 C (5.57)

˛; ˇ 2 C: Logical amplitudes (this is the information we want to protect!)

i | Assume that since initialization in j‰0i, a few elementary errors occurred on randompositions
of the chain:

j‰0i
Unknown errors

������������!
on sites with xj D 1

j Q‰0i D

Y
j

.Ej /
xj

„ ƒ‚ …
�E.x/

j‰0i … C (5.58)

x D .x1; : : : ; xL/ 2 f0; 1gL: unknown error pattern

Our goal is to figure out if and where errors occurred so that we can remove them before they
have the chance to accumulate and destroy the encoded qubit [like in Eq. (5.56)].

Due to the errors, the state above is no longer in the code space: j Q‰0i … C . [In condensed
matter parlance, it is no longer a ground state of Eq. (5.50) but an excited state.] Note,
however, that the amplitudes ˛ and ˇ are still hidden in j Q‰0i! The problem is that they were
“shuffled around” in an unknown way because of the error operations…

ii | Observation: SkEj D �EjSk if k D j � 1 or k D j

This follows from Eq. (5.34) and the fact that adjacent errors and syndromes share a single
Majorana fermion.

! Measuring Sk yields information (negative eigenvalues) about the locations of errors!
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! Measure all stabilizers Sj :

! ⁂ Error syndrome s D .s1; : : : ; sL�1/ 2 f˙1gL�1

¡! Since S2
j D 1 this yields one bit sj D ˙1 of information per stabilizer generator. It is

crucial that [due to Eq. (5.55)] these measurements cannot destroy the encoded qubit [i.e.,
they cannot reveal the amplitudes ˛ and ˇ in Eq. (5.57)].

Question: Can we use s to compute x?

If we knew the error pattern x, we could simply undo the (unitary) error operatorsEj and
recover the state j‰0i. The hitch is that we don’t know x (that’s what errors are, after all!).

iii | Decoding algorithm:

A decoding algorithm is a classical algorithm that tries to guess the actual error pattern based
on the syndrome information:

Syndrome s
Decoding
�����! Predicted error pattern x‹

D D.s/ (5.59)

D : (Classical) decoding algorithm (to be constructed)

• ¡! Note that D W f˙1gL�1 ! f0; 1gL cannot be surjective because there are onlyL� 1

bits of syndrome data butL bits in an error pattern. This immediately tells us that there
must be error patterns that the decoder cannot predict because they give rise to the same
syndrome data. Hence there must be situations (= error patterns) where the decoder
fails and the encoded quantum information is lost. This is not bad luck but intrinsic to
any quantum error correction protocol. (Because physical errors can always conspire to
act as a logical operation that one cannot detect without destroying the encoded qubit.)

• This can be seen from Eq. (5.56) were we showed that the error pattern x D .1; : : : ; 1/

leads to a logical †´ operation. But Œ†´; Sj � D 0 for all j D 1; : : : ; L � 1 so that
syndrome measurements cannot detect this type of error: s.†´/ D .C1; : : : ;C1/.
[Had no error occurred, the syndrome would be the same: s.1/ D .C1; : : : ;C1/.]
A decoder has to make a decision whether to decode s D .C1; : : : ;C1/ to x‹ D

.0; : : : ; 0/ or x‹ D .1; : : : ; 1/ (if errors are rare, the first choice is the better one!). In
any case, there will be situations where the decoder chooses wrong and fails to predict
the actual error string: x‹ ¤ x.

So which decoding algorithm should be pick for our “Majorana chain quantum code”?

For a given quantum code, there are many possible decoding algorithms. Which one to pick
depends on many factors: the probability distribution of errors, how efficient the algorithm
runs (on classical hardware), and, most importantly, its ↑ threshold (the microscopic error
rate that must be reached for the QEC scheme to become useful).

Suggestion: “Majority voting” Dmaj:
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Step 1: Construct the (only) two error patterns x‹
1 and x‹

2 consistent with the given syndrome s:

¡! Note that syndromes adjacent to two errors yield C1 when measured as they anticom-
mute twice and the minus cancels. This means that syndrome measurements detect
boundaries of error chains.

Step 2: Return the pattern with fewer errors:

• The rationale of this coice is that for low error probabilities (actually: p < 0:5) the error
pattern with the smaller number of errors is the more likely one.

• Dmaj is provably optimal for the Majorana chain quantum code if syndrome measure-
ments are perfect (it is the so called ↑ maximum-likelihood decoder).

iv | Apply corrective operations:

As a last step, we apply the inverse error operations on the locations predicted by x‹ (since
here errors are Hermitian, it isE�1

j D E
�
j D Ej ):

j Q‰0i
Apply corrections
����������!

= Undo errors
E�1.x‹/j Q‰0i (5.60a)

D E�1.x‹/E.x/j‰0i (5.60b)

D E.x‹
˚ x/j‰0i (5.60c)8<:

x‹Dx
D j‰0i ! Success 3 ,

x‹D Nx
D
5.56

�†´j‰0i ! Failure 7 /
(5.60d)

Here Nx denotes the comlementary pattern obtained from x by exchanging 0 $ 1, and ˚

denotes bit-wise modulo-2 addition, i.e., Nx ˚ x D .1; 1; : : : ; 1/.

• ¡! Note that the quantum memory controller does not know whether the correction was
successful or not. Otherwise, it could have applied the “correct correction” in the first
place. A failed QEC cycle therefore leads to a “silent” logical operation on the encoded
qubit which (most likely) screws up the quantum algorithm that follows.
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• If the decoding is successful, the QEC protocol gains at no point knowledge about the
encoded amplitudes ˛ and ˇ. That this is possible in principle was the seminal insight
by Peter Shor in 1995 [148]. It is one of the foundations upon which the promise of
scalable quantum computing rests (and, by know, several billions of market cap).

• In reality, it is often more convenient to compute and accumulate all correction strings
and adapt only the final read-out stage of the quantum circuit (or apply the corrections in
classical post-processing). If possible, this is advantageous because applying corrective
unitaries takes time and can introduce new errors.

Together, these four steps make up a ⁂ quantum error correction cycle and are repeated
periodically (in the range of microseconds to milliseconds) to ensure that the number of
errors accumulated between consecutive correction cycles remains small (which is necessary
for the decoder to function properly).

This means in particular that the decoding algorithm must be computationally efficient. This
becomes a formidable task for larger and more complicated quantum error correction codes
(like the → toric code), and explains why quite a lot of effort is put into making decoders both
better at guessing x and doing so quickly and without much classical overhead [149].

8 | This procedure hints at a much more general recipe to construct quantum error correction codes:

^ Topologically ordered phase of matter:

Robustly degenerate ground state space ! Code space

Excitations of Hamiltonian ! Errors

Local Hermitian terms in Hamiltonian ! Syndrome observables

! ⁂ Topological Quantum Error Correction (TQEC)

We will study a two-dimensional topological quantum code that does not rely on fermion parity as
a symmetry in ?? (→ toric code).

The concept of TQECbelongs to the fascinating intersection of condensedmatter physics, topology,
and quantum information theory teased in the Venn diagram of Section 0.2.

9 | Comments:

• Pairs of chains:

Recall that we assumed the logical operators†x and†y to be forbidded as physical errors
due to fermionic parity symmetry (which might or might not be a good assumption in a
particular setting). But if parity-violating unitaries cannot be physically realized, then we as
operators should also not be capable of these operations! We can’t have our cake and eat it
too!

So in an“honest” setting with fermion parity symmetry, we should implement all logical
operators as parity-symmetric operators as well. The trick is to encode a single logical qubit
not in one but in a pair of chains, e.g., by associating the negative parity of both to j0i and
postive parity of both to j1i:
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Importantly, the total fermion parity of the system is now fixed (even, in this case) and does
not have to be changed when flipping the qubit state. To make sure that no logical operators
are affected by errors, we must now completely rely on the locality argument. This means in
particular, that “storage mode” is achieved by moving the endpoints of all chains far apart
from each other to prevent local (parity-preserving) operators from coupling them (as shown
above).

Logical operators can then be applied by moving two enpoints close together and applying
(or measuring) a parity-symmetric (!) product of two Majorana modes:

Crucially, the application of †x / a
1 

b
1 (which essentially tunnels fermions from one chain

to the other) does not violate fermion parity but switches the “subsystem parities” of the
two chains (thereby flipping the logical qubit). (Note that applying a local pair of Majoranas
between the two chains away from the endpoints creates quasiparticle excitations in both
chains – which can be detected by syndrome measurements.) Encoding qubits in the sub-
parities of multiple chains is the basic principle of Majorana-based quantum computing
architectures [147, 150, 151].

• Imperfect stabilizer measurements:

In a realistic setup, there is noise everywhere, in particular, the syndrome measurements
themselves are not always correct: Sometimes ameasurement might return sj D �1, although
no error occurred on the chain. Conversely, a measurement might miss an actual error and
return sj D C1. Projective measurements in a quantum experiment always come with a rate
that quantifies how noisy they are (and this rate is non-zero)!

As we will see now, this is not just a minor inconvenience that can be“abstracted away.” That
one must take these additional errors into account can be seen from the following process
that is triggered by only two errors (one on the chain and one affecting the syndrome). Most
importantly, the process (and therefore its probability) is independent of the length of the
chain:
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The crucial point is that a single faulty syndrome measurement can trick our decoder into
applying an extensive number of artificial errors (“corrections”). A single true error is then
enough to tip the scales and destroy the encoded information.

Every realistic quantum error correction protocol must be designed to withstand noise not
only on the quantum code itself but also on the syndrome measurement routine. To achieve
this, one can employ decoding algorithms that operate on“spacetime” by taking into account
not only the current pattern of syndromes but also their history:

For theMajorana chain code, it is convenient to draw a square lattice in spacetime where syn-
drome measurements are associated to vertical edges and sj D �1 outcomes are highlighted.
Next, one identifies the endpoints of these highlighted paths (orange above). To reconstruct
the (unknown) error pattern (now including both errors on the quantum code and faulty
stabilizer measurements), the decoder performs a procedure called ↑ minimum-weight perfect
matching (MWPM) [152, 153]. The idea is to connect all endpoints pairwise (via paths that
can include horizontal and vertical edges and can terminate on the boundaries) such that
no endpoints remain unpaired (this is the “perfect matching”). Every path is assigned a
“weight” computed from the probabilities of errors and faulty stabilizer measurements, such
that smaller weights correspond to more likely paths (for low error probabilities, these are
typically the shortest paths). The perfectmatchingwith the smallest total weight (“minimum-
weight”) is then selected and used to guess the errors that occurred: every horizontal line
traversed by the paths that connect the endpoints corresponds to an error that occurred, and
every vertical line to a faulty stabilizer measurement.

A similar approach can be used to decode two-dimensional topological codes like the → toric
code [154–156] (the spacetime pattern is then three-dimensional). Note that the MWPM
decoder sketched above is no longer the maximum-likelihood decoder [157, 158], i.e., it does
not necessarily construct the corrective operations that are most likely correct (this is not
obvious).

• The Majorana chain can be mapped via a → Jordan-Wigner transformation from fermions
to spins (→ Problemset 8). This elucidates its relation to the ← transverse-field Ising model
discussed in Section 0.3. On the level of quantum codes [and in the language of stabilizers,
Eq. (5.51)] this mapping yields a degenerate version of the → toric code (on a lattice of size
L � 1) [149], which is not a quantum- but a classical memory (a ↑ repetition code). The
Majorana chain code is therefore a “topological quantum memory with caveats:” One type
of error (phase errors) are kept in check due to the locality structure of the code – this is the
hallmark of topological quantum codes. By contrast, the other type of errors (bit-flip errors)
cannot be corrected. In the“spin-world” of the toric code, this cannot be argued away and
one is left with a classical error correction code. In the “fermion world” of the Majorana
chain, one can – on purely physical grounds – argue that such errors violate fermion parity
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symmetry and are therefore suppressed. True topological quantum codes (like the toric
code) do not rely on such symmetry-protection arguments. The price to pay is that such
codes are at least two-dimensional (because there is no topological order in one-dimensional
spin systems [6]).

• Starting fromMajorana fermions, one can construct more general quantum error correction
codes called ↑ Majorana fermion codes [159].

• The concepts we explored suggest an intriguing possibility: TheMajorana chain Hamiltonian
Eq. (5.50) is a quantum phase with a ground state manifold that has the properties of a
quantum error correction code! The local terms in the Hamiltonian correspond to syndrome
operators, and a non-trivial syndrome (indicating the presence of an error) corresponds to an
excitation of this Hamiltonian. This motivates the following question:

Can we suppress errors energetically (by lowering the temperature)
instead of applying active error corrections (by a classical decoding algorithm)?

AHamiltonian with these properties is called a ↑ self-correcting quantum memory. Unfortu-
nately, the Majorana chain is not self-correcting for the same reason the one-dimensional
classical Ising model has no phase transition at finite temperatures: While the initial creation
of an error indeed costs energy, its subsequent movement is not energetically penalized (in
the classical Ising model, the creation of a domain wall costs energy, but its proliferation
through the chain does not). This mechanism prevents a thermodynamically stable phase
at finite temperature in which the quantum information encoded in the thermal Gibbs state
� D e�ˇH=Z (density matrix!) would survive exponentially long in the system size.

The quest for finding a truly self-correcting system in three spatial dimensions or less is
an active area of research. For example, it is known that a wide class of systems based on
stabilizer codes (under some additional constraints) cannot be self-correcting [160, 161] (due
to the presence of point-like excitations). There are interesting proposals with partially
self-correcting properties [162, 163]; however, to the best of my knowledge, all of them have
some drawbacks and do not qualify as true self-correcting systems.

Fun fact: In four spatial dimensions, a self-correcting quantum memory is known to exist,
namely the 4D generalization of the toric code [164]. The problem is that our world is not
four dimensional/.

• Braiding in wire networks:

Majorana modes located at extrinsic defects can exhibit → non-abelian anyonic statistics (so
called ↑ (projective) Ising anyons [165, 166]). Note that these are not quasiparticle excitations
but high-energy deformations of the Hamiltonian! As we have seen in this chapter, Majorana
modes naturally occur on the endpoints of p-wave superconducting wires (they can also
appear in the vortices of two-dimensional px C ipy superconductors [167]).

Measuring the parity of a fermion mode given by two Majorana modes (recall†´ / 2L1)
can then be interpreted as the ↑ fusion of two“Ising anyons.” The non-abelian nature of these
anyons is reflected in the fact that there are two consistent outcomes of this measurement:
the fermion mode can be empty or occupied. Formally, one writes � � � D 1C‰ where �
denotes an Ising anyon (realized by a Majorana mode), 1 corresponds to an empty fermion
mode and‰ to an occupied fermion mode.

It turns out that moving Ising anyons adiabatically (= slowly) around each other effects
non-trivial unitary operations on the degenerate subspace that encodes the different fusion
outcomes. This process is called ↑ braiding and can be used to manipulate the encoded
qubits (like the ones in our Majorana chain quantum code) without decoding them. This is the
rationale of → topological quantum computation, an intrinsically robust quantum computing
architecture.

But how can one braid the Majorana modes at the endpoints of Majorana chains around each
other? The idea is to use wire networks with locally tunable chemical potentials (by applying
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local gate voltages) [150]. By tuning the chemical potential, one can make segments of the
wire network topological, while other parts remain in the trivial phase [recall Eq. (5.22)].
The boundaries between topological and trivial segments then host Majorana modes that can
be shuffled around by changing the local gate voltages. If one adds T-junctions to connect
these wires, one can start braiding Majorana modes around each other:

This is the basic idea behind a Majorana-based topological quantum computer. However,
there are two caveats to be aware of: First, the braiding rules of Ising anyons cannot realize a
universal gate set [168] so that one needs additional (non-topological) gates to construct a
full-fledged quantum computer. And second, from an engineering perspective, it is simpler
to replace the dynamical braiding by meticulously designed sequences of projective mea-
surements [147, 169]; this architecture is known as ↑ measurement-based topological quantum
computing and is actively pursued by Microsoft [151].

5.7. ‡ Experiments

• The first evidence for Majorana zero modes at the boundaries of quantum wires was reported in
2012 by Mourik et al. [141]. They fabricated a semiconducting nanowire with strong spin-orbit
coupling that opens a band gap when a magnetic field is applied (to enter a “spinless” regime).
This nanowire is then coupled to a normal s-wave superconductor which induces effective p-wave
pairing in the nanowire [170, 171]. The emergence of zero-energy Majorana modes can than be
probed by ↑ tunnel spectroscopy. These results were later substantiated by many follow-up studies
(e.g. [172, 173]), see also Ref. [174] for a review.

Characterizing the topological nature of Majorana zero modes is notoriosly difficult because their
signatures are ofthen hard to distinguish from non-topological phenomena. This has lead to several
controversial reports, including complete retractions of papers [142].

• As discussed in Section 5.6, Majorana chains can in principle be used as quantum memories.
Beyond that, “braiding”Majorana zero modes (either by adiabatically moving them around each
other or projectively measuring them) can be used to affect unitary gates on the encoded qubits
(these unitaries are not universal, though). This led to proposals forMajorana-chain based quantum
computing architectures [147, 150] which are actively pursued by Microsoft’s quantum computing
division. In 2025, first experimental results of parity measurements of Majorana qubits were
reported [151] – and immediately criticized as unreliable [175].

The future will tell whetherMajoranamodes are a feasible approach to build a quantum computer…
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↓ Lecture 18 [27.06.25]

6. Classification of Non-Interacting Fermionic
Topological Phases

A good introduction to the classification of topological insulators and superconductors is given by Lud-
wig [92] (this section is partly based on his paper). A more technical description of the scheme with
examples is given by Ryu et al. [122] (their detailed introduction is quite useful). A completely different
angle on the classification is provided byKitaev [57] (be warned: this paper looks“simple”as it is extremely
high-level but the underlying mathematical framework is very deep).

Goal: By now we have seen various models of non-interacting fermions in one and two dimensions that
are classified by different topological indices and protected by different symmetries (or none at all). Since
all of these models are described by band structures, the question arises whether one can find a unifying
scheme to classify the topological phases of non-interacting fermions.

The description of such an approach is the goal of this section.

6.1. Generic symmetries and the tenfold way

Our final goal is to fit all discussed topological models into a single classification scheme.

As a preliminary step, we must first decide on the symmetries to use for this classification:

1 | Goal: Classify TPs of non-interacting fermions

Approach: Use SP HamiltonianH to describe & classify MB Hamiltonian OH

Here,H can either be a“standard” SP Hamiltonian or a Bogoliubov-de Gennes Hamiltonian if
superconductivity is present.

! We are interested in constraints on the matrixH that arise from the symmetries of OH .

2 | Which symmetries of OH to use?

Remember: X symmetry of OH W, ŒX; OH� D 0

← Wigner’s theorem ! X unitary or antiunitary (remember → Problemset 1)

! Four possibilities on Fock space:

In Chapters 2, 4 and 5, we encountered four distinct classes of symmetries that can act on Fock
space:
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Unitary: UiU�1
D C i ; UciU

�1
D Uij cj (6.1a)

(unitary MB sym.)
h
U; OH

i
D 0 , ŒU;H� D 0 (unitary SP sym.)

Time-reversal: T iT �1
D � i ; T ciT

�1
D Uij cj (6.1b)

(antiunitary MB sym.)
h
T ; OH

i
D 0 , ŒUK;H � D 0 (antiunitary SP sym.)

Particle-hole: C iC�1
D C i ; CciC

�1
D Uij c

�
j (6.1c)

(unitary MB sym.)
h
C ; OH

i
D 0 , fUK;H g D 0 (antiunitary SP pseudosym.)

Sublattice: S iS�1
D � i ; SciS

�1
D Uij c

�
j (6.1d)

(antiunitary MB sym.)
h
S ; OH

i
D 0 , fU;H g D 0 (unitary SP pseudosym.)

Note that the unitary mixing of particles (c�
i ) and holes (ci ) is not necessarily canonical, i.e.,

does not preserve the fermionic anticommutation relations in general (remember the ← Bogoliubov
transformation inChapter 5). By contrast, herewe onlymix annihilation operators among themselves
or map them to creation operators only.

Using unitary symmetries of OH (H ) is possible but not universal!

In the sense that the classification would be“infinite” because there are infinitely many unitarily
realized symmetries and the classification depends on the specific symmetry (representation);
→ extended note below.

! ^ TRS, PHS and SLS…

This is a conceptually important but subtle point: The decision to “factor out” all unitary symmetries
is not so much physically motivated but more a decision based on systematics. One can classify
fermionic SPTs with unitary symmetries, but this is a question that cannot really be conclusively
answered because there are infinitely many possible symmetry groups. Thus the most systematic
approach asks whether there is anything below that sprawling complexity that is simpler and more
systematic. After all, one should first understand these basics before plunging into the never
ending story that lies beyond. To put this into context: There are classifications for certain unitary
symmetry groups for free fermions [176–179] (but only “certain” not “all”). Also for bosonic SPTs
one considers unitary symmetries [47]. So there is nothing inherently “bad” about them. The
difference becomes clear when one compares the classification table below (the“periodic table”)
with similar tables for bosonic SPTs [47]: The latter always have an exemplary character in that one
must hope that the unitary symmetry one is interested in is listed; these lists are not exhaustive (they
cannot be). However, once one throws all unitary symmetries away (= allows them to be explicitly
broken), what is left is, quite unexpectedly, (1) non-trivial and (2) finite so that the classification
introduced in the following is exhaustive (although in a more restricted sense).

…and only SP Hamiltonians without unitary symmetries:

H ⁂ irreducible W,

�
ŒU;H� D 0 ) U D ei�1

�
(6.2)

These irreducible Hamiltonians without unitary symmetries can be understood as the “atomic
building blocks” of all Hamiltonians. To see this, consider an arbitrary Hamiltonian H with
symmetry group G0 that is unitarily realized on the SP Hilbert space H . As always, we can
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decompose the Hilbert space into irreducible representations � of G0 (with possible multiplicities):

H D

M
�

H� : (6.3)

Each subspace H� is composed of equivalent copies of the same irrep � (“equivalent” in the sense
of “isomorphic”):

H� D

m�M
˛D1

H
.˛/

�
' QH� ˝ V� (6.4)

where H
.˛/

�
' V� for all ˛ with the irrep V� and QH� D Cm� . It is d� D dimV� the dimension of

the irrep � andm� the multiplicity of the irrep � in H . The H� are known asG0-isotypic components
of H [180].

Since ŒH;Ug � D 0 for all g 2 G0 (with unitary representation Ug ) and V� is irreducible, it is

H D

M
�

H� ˝ 1d�
and Ug D

M
�

1m�
˝ U .�/

g : (6.5)

The Hamiltonian blocksH� act on QH� and have no longer any unitary symmetry left, they are
the “irreducible building blocks” of all Hamiltonians, just as the U .�/

g are the irreducible building
blocks of all representations of the symmetry group G0. It is these irreducible Hamiltonians
that we will focus on below (just like mathematicians study groups in terms of their irreducible
representations U .�/

g ).

3 | For a given irreducible SP HamiltonianH check (henceforth we forget about OH )…

9UT ‹ W ŒUT K;H � D 0 and if so: UTU
�
T

‹
D ˙1 (6.6a)

9UC ‹ W fUC K;H g D 0 and if so: UCU
�
C

‹
D ˙1 (6.6b)

9US ‹ W fUS ;H g D 0 (6.6c)

! Define:

TRS: T � UT K (antiunitary symmetry) (6.7a)

PHS: C � UC K (antiunitary pseudosymmetry) (6.7b)

SLS: S � US (unitary pseudosymmetry) (6.7c)

¡! Here we switch from our previous notation TU D UK to T � TUT
D UT K (similarly for

C D CU andS D SU ) becausewewill mixT ,C andS below and then it is important to distinguish
the unitaries UT , UC and US .

! Labeling scheme:

ŒT;H� ¤ 0 ,W T D 0

ŒT;H� D 0 with T 2
D C1 ,W T D C1

ŒT;H� D 0 with T 2
D �1 ,W T D �1

fC;H g ¤ 0 ,W C D 0

fC;H g D 0 with C 2
D C1 ,W C D C1

fC;H g D 0 with C 2
D �1 ,W C D �1

fS;H g ¤ 0 ,W S D 0

fS;H g D 0 ,W S D 1

(6.8a)

(6.8b)

(6.8c)

(6.8d)

(6.8e)

(6.8f )

(6.8g)

(6.8h)
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Note that this is an abuse of notation: In the left column, T=C=S denote the operators of Eq. (6.7),
whereas in the right column they are simply variables used to label the situation on the left. From
the context it is always clear which use is intended.

! Triple .T; C; S/ encodes answers to classification in Eq. (6.6)

Note:

These constraints on the SP level can also be constructed quite systematically without deriving
them fromMB symmetries:

Imagine you are given a gapped SP Hamiltonian (= Hermitian matrix)H and a unitary U , and your
job is to formulate a linear/antilinear constraint onH using only U and complex conjugation. The
constraint can be written in the form

f .H;U /
Š

D H : (6.9)

We want f to be linear/antilinear inH and its result must be Hermitian becauseH is; hence it
should be f .H;U / D ˛UH .�/U � with ˛ 2 R. Now note that det.H/ D det.˛UH .�/U �/ D

˛N det.H/; sinceH is gapped we can w.l.o.g. shift the Fermi energy (= zero energy) into the gap
so that det.H/ ¤ 0 and we have ˛N D 1.

In general, this leaves only four possibilities:

f .H;U / D

8̂̂̂<̂
ˆ̂:

C1 � UHU � (unitary symmetry)
�1 � UHU � (unitary pseudosymmetry ! SLS)
C1 � UH�U � (antiunitary symmetry ! TRS)
�1 � UH�U � (antiunitary pseudosymmetry ! PHS)

(6.10)

Since for an irreducible Hamiltonian (by construction) there is no unitary symmetry (except the
trivial one), we are left with the latter three constraints that are nothing but the three symmetries
(on the MB level) we have discussed before.

4 | Important:

For a given irreducible Hamiltonian, TRS TU , PHS CU and SLS SU are unique (if present)

To see this, assume TU1
and TU2

were two different time-reversal symmetries:�
TU1

;H
�

D 0 and
�
TU2

;H
�

D 0 (6.11)

Then QU WD TU1
TU2

D U1U
�
2 is a unitary symmetry ofH :�
QU ;H

�
D 0

H irreducible
HHHHHHH) QU D ei�1 ; (6.12)

and therefore TU1
D U1K D ei�U

��
2 K / T �1

U2
. So we can replace TU1

by TU2
or vice versa.

The same argument applies to PHS and similarly to SLS.

5 | Sublattice symmetry:

As already mentioned previously in Sections 4.1 and 5.3:

S D T ı C D UTU
�
C unitary operator with (w.l.o.g.) S2

D C1 (6.13)

One the many-body level: S D T ı C .

In particular:

TRS: ŒT;H� D 0

PHS: fC;H g D 0

)
)

º
fS;H g D 0 (6.14)
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! C cannot be eliminated in favor of T since S is not a unitary symmetry
(but a pseudosymmetry)

¡! This means that despite “factoring out” all unitary symmetries of the SP HamiltonianH , there
can still be a unitary PHS symmetry C of the MB Hamiltonian OH left because (1) C is antiunitary
on the SP level and (2) S D T ı C is a pseudosymmetry on the SP level.

! Keep T , C , and S

6 | The “Tenfold way”:

Eq. (6.14) ! (here T;C; S are used in their function as labels)

.T ¤ 0 _ C ¤ 0/ ) S D jTC j (6.15a)

but: T D 0 D C )

(
either S D 0

or S D 1
(6.15b)

This is easy to understand: If T and/or C are present, the relation S D T ı C determines the
absence/presence of S automatically. Only if both T and C are absent, the absence/presence of
S is not determined. (Note that T ı C can be a symmetry even if T and C are not symmetries
separately!)

! 3 � 3C 1 D 10 symmetry classes:

Remember: We encountered the classes AI, D and BDI before; the Kane-Mele model belonged to
AII and the Chern insulator to A.

As mentioned before, the names of the classes go back to the mathematician Élie Cartan who
assigned them to so called (large) symmetric spaces (of compact type); in the present context, the labels
are typically taken“as is” without assigning any deeper meaning to them. The order in the above
table seems arbitrary but is actually not – this will become clear later.
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6.2. The periodic table of topological insulators and
superconductors

We are finally prepared to fit all our discussed topological models into a single classification scheme:

7 | ^ Gapped HamiltoniansH of class X in dimension d

Question: How to label the topological phases that can be realized by these systems?

Note that a specific systemH in Xmay have additional symmetries (both unitary and antiunitary).
However, the classification below does not rely on these symmetries, so that they can be broken by
perturbations without leaving the phase.

8 | Answer:

Periodic table of topological insulators & superconductors:

The entries denote the classification of topological phases. 0means“no TPs possible.” Z means
that there is an infinite number of different TPs labeled by an integer etc.

! In every dimension, 5 out of 10 symmetry classes support TPs!

• The classification is referred to as “periodic table” because of its periodic structure for
d D 0; 1; : : : where the period for the “complex” classes is 2 and for the “real” classes 8.

• There are several equivalent ways to derive this table (and its periodicity), none of which is
trivial. We will sketch one of the approaches below.

These methods were developed around 2008–2009 by different researchers [56, 57, 122].

• In case you wonder about the column for d D 0: One should think of these systems as “blobs”
without spatial structure. Mathematically, this column follows naturally and is not really
special (actually, it is simpler because the constraints on the Hamiltonians are easier to
implement). The Brillouin zone is simply T 0 (which is a point).

9 | Recipe:
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If one studies a particular model (specified by a SP HamiltonianH ) and wants to find out whether
any of its phases are topological, the standard procedure goes as follows:

i | Check whether the SP HamiltonianH features TRS, PHS, and/or SLS and (if so)
whether TRS/PHS square to ˙1.

! .T; C; S/ ! Class X

ii | Use the periodic table above to check whether X supports topological phases in the
spatial dimension d of the given system.

iii | Look up the associated topological invariant I for .X; d / in Ref. [122].

iv | Compute I D I ŒH� as a function of the control parameters of the system and
check whether it non-zero in (some of ) the phases.

Without knowing about the periodic table and the systematic approach of Ref. [122] to construct
topological invariants, we nevertheless succeeded for the Chern insulator (Class A) with the Chern
number, the Kane-Mele model (Class AII) with the Pfaffian index, the SSH chain (Class AIII) with
the winding number, and the Majorana chain (Class D) with the Z2-index constructed from the
BdG-Hamiltonian,.

Note: The symmetry classes are not exclusive. E.g., every system in classBDI can also be considered
a member of the classesAI,D, orAIII. We encountered this ambiguity for theMajorana chain which
generically is considered a representative of D even if the “clean”Majorana chain Hamiltonian
does not break TRS. In this situation, TRS is considered an“accidental” symmetry that one does
not want to rely on. If, however, one considers the Majorana chain a representative of BDI, TRS
becomes a crucial symmetry that must not be broken. This may seem arbitrary but is perfectly
valid as the choice of a protecting symmetry essentially specifies which perturbations we consider
allowed and which forbidden. This situation is typical for all SPT phases as they do not have
intrinsic topological order (recall our discussion of SPTs in ← Section 0.5). In → Section 6.4 we
discuss stacks of Majorana chains where this concept should become clear.

6.3. Frameworks for classification

There are different frameworks that can be used to derive the periodic table above. Unfortunately, none of
them is straightforward and all of them make heavy use of highly non-trivial physical and/or mathematical
facts. A deep study of any of these approaches would easily fill its own course, so we keep it simple and
sketch only one of the approaches exemplarily:

• Anderson localization on the boundary (Details: ↑ Refs. [56, 122])

Rationale: Study field theories (↑ non-linear sigma models) that describe the boundary of the system
and determine when they retain delocalized states in the presence of disorder (i.e., whether they
avoid ↑ Anderson localization). Mathematically, this happens if certain topological terms can be
added to the action; the existence (and properties) of these terms depends on X and d and provides
the periodic table.

• Quantum anomalies on the boundary (Details: ↑ Ref. [181])

Rationale: Study↑ anomalous field theories that can emerge as effective descriptions on the boundaries
of the system (this approach relates to the one based on Anderson localization above). To cite
Ludwig [92]:
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“[The approach] relies on the notion that the boundary of a topological insulator (superconductor) cannot
exist as an isolated system in its own dimensionality. Rather it must always be attached to a higher
dimensional bulk.”

We encountered such an anomaly before when we discussed the IQHE and realized that its chiral
edge modes are in conflict with the ← Nielsen-Ninomiya theorem. These edge modes can only be
consistently formulated on the boundary of a two-dimensional bulk.

• K-Theory: (Details: ↑ Ref. [57])

In contrast to the other two frameworks which (1) do not require translational invariance, and
(2) focus on the boundary of the system, the K-theory approach pioneered by Kitaev assumes
translational invariance and describes the bulk of the system. Let us briefly sketch the rationale of
this (very mathematical) approach to get a feeling how the classification problem can be tackled on
a very high level:

↑ (Topological)K-theory is a very generalmathematical framework that is used to study vector bundles
over topological spaces. It goes back to the influential 20th-century mathematicianAlexander
Grothendieck. In its application to classify topological phases, the topological base space is
essentially the Brillouin torus and the system/Hamiltonian is described by a (potentially non-trivial)
vector bundle over this space. Before its application to topological phases, K-theory had already
found applications in string theory.

1 | ^ Gapped (translation invariant) system with n filled (m empty) bands

described by Bloch HamiltonianH.k/

2 | Spectral flattening:

In this first step, we simplify the Hamiltonian without leaving the quantum phase to classify:

H.k/
Continuous deformation
��������������! H.k/ (6.16a)

with �.H.k// D .�1; : : : ;�1„ ƒ‚ …
n filled bands

;C1; : : : ;C1„ ƒ‚ …
m empty bands

/ (6.16b)

�.A/ denotes the spectrum (eigenvalues) of the operator A.

3 | ^ Simplest case: Class A !

(Hence we do not have to implement any symmetry constraint in the following.)

H.k/ D U.k/

�
1m 0

0 �1n

�
„ ƒ‚ …

X

U�.k/ with U.k/ 2 U.mC n/ (6.17)

U.mC n/ is the matrix group of unitary .mC n/ � .mC n/-matrices.

4 | “Gauge symmetry”:

The decomposition in Eq. (6.17) is not unique:

U � U0
W, U D U0

�

�
U1 0

0 U2

�
for U1 2 U.m/; U2 2 U.n/ (6.18)

since then

H.k/ D U.k/X U�.k/ D U0.k/X U0�.k/ (6.19)
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That is, the H-encoding unitary U is only defined up to unitaries from U.m/ � U.n/.

!

H W T d
3 k 7! H.k/ ¶ ŒU.k/�� 2

U.mC n/

U.m/ � U.n/
D Gm;nCm.C/ (6.20)

Gm;nCm.C/: ↑ complex Grassmannian

In mathematics, Grassmannians are differentiable manifolds that parametrize the set of
m-dimensional linear subspaces of an nCm-dimensional vector space. The concept was
introduced by mathematicianHermann Grassmann in the 19th century.

! Gm;nCm.C/ is the ⁂ classifying space C0 for symmetry class A
(and one of Cartan’s symmetric spaces, which is where the label “A” comes from)

This statement is not completely correct, actually it is

C0 D

[
k2Z

lim
s!1

U.2s/

U.s C k/ � U.s � k/
' lim

n;m!1

U.mC n/

U.m/ � U.n/
� Z : (6.21)

The idea behind this is that SP Hamiltonians of different sizes should be comparable (and the
classification should not depend on system-specific parameters likem and n). In particular,
for systems with d > 0 it should not matter whether one adds additional trivial bands to the
system (like those from closed atomic shells). This leads to the concept of ↑ stable equivalence
which has its counterpart in K-theory where one considers vector bundles modulo trivial
bundles.

5 | Classifying spaces:

Similar arguments [taking the constraints (6.1) imposed by symmetries on the SPHamiltonian
into account] lead to the following table of classifying spaces:

– Sp.n/ denotes the compact symplectic group which is the analog of the unitary groupU.n/
if one replaces the field C by quaternions H.

– The distinction between the two complex classes A and AIII and the remaining eight real
classes follows from the reality constraints (that is, the constraint on the SPHamiltonian
includes a complex conjugate) on the Hamiltonians for real classes, and the missing
of such for complex classes. On the mathematical level, this leads to the distinction
between complex and real vector bundles and henceforth complex and realK-theory
with classifying spaces Cq (q mod 2) andRq (q mod 8), respectively.
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6 | ^ Simplification: T d 7! Sd (we did this before when discussing Skyrmions in Sec-
tion 2.1.1)

¡! This simplification is done for pedagogic reasons; it is undone → below and not part of the
full classification.

!

fTopological phases g
Physics

D

(
Equivalence classes of continuous maps
H W Sd ! C0 that can be continuously
deformed into each other

)
(6.22a)

Math
D hd th ↑ Homotopy group of C0i � �d .C0/ (6.22b)

The homotopy group �d .X/ is the group of equivalence classes (= homotopy classes) of
(base-point-preserving) homeomorphisms (= continuous maps) from the d -dimensional
sphere Sd to the topological space X . The special group �1.X/ is called ↑ fundamental
group and describe the topologically different ways closed loops can be drawn on the space
X , where two loops are equivalent if they can be continuously deformed into each other (this
is the homotopy).

Example for d D 2: �2.C0/
�
D Z ! Chern number ,

Remember that the IQHE (and relatives) belong to classA (classified byC0) and we identified
the Z-valued Chern number as label for possible topological phases.

7 | Undo simplification (Sd 7! T d ) & Include symmetry constraints

(Here we focus on the eight real classes, i.e., X¤A,AIII.)

Kitaev & K-Theory [57]
�
�!

fTopological phases of .X; d / g D

�
�

NT d ; Rq

�
„ ƒ‚ …

K
�q
R . NT d /

K-theory
D �0.Rq�d /„ ƒ‚ …

⁂ Strong topological index
! Periodic table

˚

d�1M
sD0

 
d

s

!
�0.Rq�s/„ ƒ‚ …

⁂ Weak topological indices
(not part of the periodic table)

(6.23)

– �0.X/ is the 0th homotopy group of X ; its elements label the connected components of
X . Since the connectivity of the symmetric spacesRq is known, the right-hand side of
Eq. (6.23) can be looked up in the literature.

– �
�

NT d ; Rq

�
describes the equivalence classes of all maps H.k/ from the BZ T d into an

appropriately restricted matrix space (which depends on the symmetry class X, ↑ Table
1 in Ref. [92]; for d D 0 the target space is the classifying spaceRq that belongs to X, for
d > 0 this is only true at the TRIMs) that, in addition, satisfy the symmetry constraints
on momenta demanded by the symmetry class X (the latter constraint is indicated by the
bar of NT d ); this object is known inK-theory as the“realK-groupK�q

R . NT d / of NT d .”
Remember, for example, that TRS relates the Bloch Hamiltonian at momentum k to
the Bloch Hamiltonian at momentum �k, Eq. (2.31d). These constraints are hidden in
the precise definition of �

�
NT d ; Rq

�
.

! Computing �0.Rq�d / (= strong topological indices)…

– for q D 0; : : : ; 7 (real symmetry classes = rows)
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– and d D 0; 1; : : : (dimensions of space = columns)

…yields the periodic table (more precisely: the eight rows of the real symmetry classes)

Comments:

– There is an analog expression for the two complex classes A and AIII (first two rows of
the periodic table).

– The contributions labeled“weak topological indices” are not part of the periodic table.

These additional indices have physical consequences, e.g., for ↑ weak topological insula-
tors [57, 96, 97].

– The indices of the classifying spaces Rq�d and Rq�s are defined modulo 8; for the
complex classes, the periodicity is 2 (this is known in K-theory as ↑ Bott periodicity).
This leads to the periodicity of the periodic table in the dimension d and finally explains
its name.

In contrast to the more famous periodic table in chemistry, this one is really periodic,.

8 | Example for q D 4 (AII) and d D 2 (e.g. ← Kane-Mele model):

�
�

NT 2; R4

�
D �0.R2/˚ 1 � �0.R4/˚ 2 � �0.R3/ (6.24)

D Z2„ƒ‚…
Pfaffian index

˚ Z„ƒ‚…
#Valence bands

˚ 2 � 0„ƒ‚…
No weak indices

(6.25)

The values for �0.Rq/ are provided in Table 2 of Ref. [57] but can also be read off from the
d D 0 column of the periodic table (replacing 2Z by Z).

6.4. Consequences of interactions

In this part, we focused on non-interacting fermions. The crucial feature of such theories is that their MB
Hamiltonian OH can be encoded by a SP HamiltonianH so that their MB spectrum can be built from
the SP spectrum; this makes them exactly (or efficiently) solvable. The periodic table is built on the SP
Hamiltonians and is therefore only valid for systems that can be reasonably described by such theories.

The natural question is then of course:

What happens to the periodic table if interactions are included?

It is clear that interactions allow formore“paths”to connect gappedHamiltonians, so that the classification
must become“coarser” (i.e., phases that are separatedwithout interactionsmay no longer be if interactions
are allowed).

Quick answer:

• A full classification is known for quartic interactions (↑ Ref. [182]).

• In d D 1 dimensions, (interacting) fermions can be mapped to (interacting) bosons and fully
classified via techniques that we discuss in Part II (↑ Refs. [29, 183, 184]).

• There is no complete classification known for arbitrary interactions and dimensions (as far as I
know).

• This is a topic of ongoing research… (e.g. ↑ Refs. [185, 186])
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However, there is an example that demonstrates that (and how) the periodic table is modified by interactions
for a specific .X; d /:

This was worked out by Fidkowski and Kitaev in 2010 [187]. You study this example on → Problemset 8.

1 | ^ Majorana chain for w D � > 0 and � D 0: [Remember Eq. (5.39) in Section 5.5]

TRS & PHS ! Symmetry class BDI in d D 1 ! Z-index

Remember the Z-valued winding number defined in Section 5.3 which is quantized if TRS is
present.

¡! Here we do not consider the Majorana chain as representative of class D without TRS; it turns
out that the corresponding Z2-index is stable under interactions [29].

2 | Time-reversal symmetry:

T iT �1
D �i and T 2i�1T �1

D C 2i�1 ; T 2iT
�1

D � 2i (6.26)

This follows from the“standard” TRS for spinless fermions: T ci T
�1 D ci and Eq. (5.33).

! Only quadratic couplings between even (red) and odd (blue) Majorana modes allowed!

3 | ^ Stack of Majorana chains in the topological phase:

Note that one could gap out the edge modes with i˛
1 

˛C1
1 but these terms break TRS (the coupled

modes are both either even or odd)!

! Z-index = # dangling Majorana modes ˛
1 (on one end of the stack)

The chains are oriented in that they start with an odd and end with an even mode (which transform
differently under TRS). Reversing the orientation of a chain therefore gives a negative index and
indeed, a pair of chains with opposite orientation can be gapped out without breaking TRS because
the two Majorana modes on one end are even and odd.

^ 8 topological chains ! BDI-index � D 8

Note that if there is an odd number of dangling Majorana modes on one end, you cannot gap them
out completely even when breaking TRS because after gapping out all pairs a single mode will be
left. This distinguishes the situations with an even and an odd number of Majorana zero modes
and corresponds to the Z2-index of class D that does not require TRS.
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4 | Idea: Connect topological to trivial phase via quartic interaction:

OH.�;w; �/ D OHMC.�;w/C �

2LX
nD1

Wn (6.27)

with quartic interaction between the 8 chains

Wn D 1
n

2
n

3
n

4
n ˙ : : :many more quartic terms (6.28)

See ↑ Eq. (8) in Ref. [187] for the full term and its derivation.

¡! The interaction termsWn commute with the TRS in Eq. (6.26).

^ Protocol:

On this continuous path…

• the bulk gap remains open…
This can be shown by exact diagonalization on a unit cell (which contains 8 fermion modes
that span a 28 D 256 dimensional Fock space).

You show this numerically on → Problemset 8.

• and TRS is not broken.
This is easily checked by inspection.

5 | Conclusion:

With interactions � D 0 and � D 8 are the same phase in BDI! (6.29)

! Z-index of BDI in d D 1 reduces to Z8-index

! With interactions there are not infinitely many top. 1D superconductors in BDI but only 8!

For an overview how quartic interactions modify the periodic table in other dimensions and for
other symmetry classes see Ref. [182].
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↓ Lecture 19 [03.07.25]
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